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Preface

In February of 2007, I converted my “What’s new” web page of research
updates into a blog at terrytao.wordpress.com. This blog has since grown
and evolved to cover a wide variety of mathematical topics, ranging from my
own research updates, to lectures and guest posts by other mathematicians,
to open problems, to class lecture notes, to expository articles at both basic
and advanced levels. In 2010, I also started writing shorter mathematical
articles on my Google Buzz feed at

profiles.google.com/114134834346472219368/buzz .

This book collects some selected articles from both my blog and my Buzz
feed from 2010, continuing a series of previous books [Ta2008], [Ta2009],
[Ta2009b], [Ta2010], [Ta2010b], [Ta2011], [Ta2011b], [Ta2011c] based
on the blog.

The articles here are only loosely connected to each other, although many
of them share common themes (such as the titular use of compactness and
contradiction to connect finitary and infinitary mathematics to each other).
I have grouped them loosely by the general area of mathematics they pertain
to, although the dividing lines between these areas is somewhat blurry, and
some articles arguably span more than one category. Each chapter is roughly
organised in increasing order of length and complexity (in particular, the first
half of each chapter is mostly devoted to the shorter articles from my Buzz
feed, with the second half comprising the longer articles from my blog.

A remark on notation

For reasons of space, we will not be able to define every single mathematical
term that we use in this book. If a term is italicised for reasons other than

xi



xii Preface

emphasis or for definition, then it denotes a standard mathematical object,
result, or concept, which can be easily looked up in any number of references.
(In the blog version of the book, many of these terms were linked to their
Wikipedia pages, or other on-line reference pages.)

I will however mention a few notational conventions that I will use
throughout. The cardinality of a finite set E will be denoted |E|. We
will use the asymptotic notation X = O(Y ), X � Y , or Y � X to denote
the estimate |X| ≤ CY for some absolute constant C > 0. In some cases
we will need this constant C to depend on a parameter (e.g. d), in which
case we shall indicate this dependence by subscripts, e.g. X = Od(Y ) or
X �d Y . We also sometimes use X ∼ Y as a synonym for X � Y � X.

In many situations there will be a large parameter n that goes off to
infinity. When that occurs, we also use the notation on→∞(X) or simply
o(X) to denote any quantity bounded in magnitude by c(n)X, where c(n)
is a function depending only on n that goes to zero as n goes to infinity. If
we need c(n) to depend on another parameter, e.g. d, we indicate this by
further subscripts, e.g. on→∞;d(X).

Asymptotic notation is discussed further in Section 3.5.

We will occasionally use the averaging notation Ex∈Xf(x) := 1
|X|
∑

x∈X f(x)

to denote the average value of a function f : X → C on a non-empty finite
set X.

If E is a subset of a domain X, we use 1E : X → R to denote the
indicator function of X, thus 1E(x) equals 1 when x ∈ E and 0 otherwise.
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Chapter 1

Logic and foundations

1.1. Material implication

The material implication “If A, then B” (or “A implies B”) can be thought
of as the assertion “B is at least as true as A” (or equivalently, “A is at
most as true as B”). This perspective sheds light on several facts about the
material implication:

(1) A falsehood implies anything (the principle of explosion). Indeed,
any statement B is at least as true as a falsehood. By the same
token, if the hypothesis of an implication fails, this reveals nothing
about the conclusion.

(2) Anything implies a truth. In particular, if the conclusion of an
implication is true, this reveals nothing about the hypothesis.

(3) Proofs by contradiction. If A is at most as true as a falsehood, then
it is false.

(4) Taking contrapositives. If B is at least as true as A, then A is at
least as false as B.

(5) “If and only if” is the same as logical equivalence. “A if and only
if B” means that A and B are equally true.

(6) Disjunction elimination. Given “If A, then C” and “If B, then C”,
we can deduce “If (A or B), then C”, since if C is at least as true
as A, and at least as true as B, then it is at least as true as either
A or B.

(7) The principle of mathematical induction. If P (0) is true, and each
P (n+ 1) is at least as true as P (n), then all of the P (n) are true.
(Note, though, that if one is only 99% certain of each implication

1



2 1. Logic and foundations

“P (n) implies P (n + 1)”, then the chain of deductions can break
down fairly quickly. It is thus dangerous to apply mathematical in-
duction outside of rigorous mathematical settings. See also Section
6.9 for further discussion.)

(8) Material implication is not causal. The material implication “Is A,
then B” is a statement purely about the truth values of A and B,
and can hold even if there is no causal link between A and B. (e.g.
“If 1 + 1 = 2, then Fermat’s last theorem is true.”.)

1.2. Errors in mathematical proofs

Formally, a mathematical proof consists of a sequence of mathematical state-
ments and deductions (e.g. “If A, then B”), strung together in a logical
fashion to create a conclusion. A simple example of this is a linear chain of
deductions, such as A =⇒ B =⇒ C =⇒ D =⇒ E, to create the con-
clusion A =⇒ E. In practice, though, proofs tend to be more complicated
than a linear chain, often acquiring a tree-like structure (or more generally,
the structure of a directed acyclic graph), due to the need to branch into
cases, or to reuse a hypothesis multiple times. Proof methods such as proof
by contradiction, or proof by induction, can lead to even more intricate loops
and reversals in a mathematical argument.

Unfortunately, not all proposed proofs of a statement in mathematics are
actually correct, and so some effort needs to be put into verification of such
a proposed proof. Broadly speaking, there are two ways that one can show
that a proof can fail. Firstly, one can find a “local”, “low-level” or “direct”
objection to the proof, by showing that one of the steps (or perhaps a cluster
of steps, see below) in the proof is invalid. For instance, if the implication
C =⇒ D is false, then the above proposed proof A =⇒ B =⇒ C =⇒
D =⇒ E of A =⇒ E is invalid (though it is of course still conceivable
that A =⇒ E could be proven by some other route).

Sometimes, a low-level error cannot be localised to a single step, but
rather to a cluster of steps. For instance, if one has a circular argument,
in which a statement A is claimed using B as justification, and B is then
claimed using A as justification, then it is possible for both implications
A− > B and B− > A to be true, while the deduction that A and B are
then both true remains invalid1.

Another example of a low-level error that is not localisable to a single
step arises from ambiguity. Suppose that one is claiming that A =⇒ B
and B =⇒ C, and thus that A =⇒ C. If all terms are unambiguously

1Note though that there are important and valid examples of near -circular arguments, such
as proofs by induction, but this is not the topic of my discussion today.



1.2. Errors in mathematical proofs 3

well-defined, this is a valid deduction. But suppose that the expression B is
ambiguous, and actually has at least two distinct interpretations, say B1 and
B2. Suppose further that the A =⇒ B implication presumes the former
interpretation B = B1, while the B =⇒ C implication presumes the latter
interpretation B = B2, thus we actually have A =⇒ B1 and B2 =⇒ C. In
such a case we can no longer validly deduce that A =⇒ C (unless of course
we can show in addition that B1 =⇒ B2). In such a case, one cannot
localise the error to either A =⇒ B or B =⇒ C until B is defined more
unambiguously. This simple example illustrates the importance of getting
key terms defined precisely in a mathematical argument.

The other way to find an error in a proof is to obtain a “high-level” or
“global” objection, showing that the proof, if valid, would necessarily imply
a further consequence that is either known or strongly suspected to be false.
The most well-known (and strongest) example of this is the counterexample.
If one possesses a counterexample to the claim A =⇒ E, then one instantly
knows that the chain of deduction A =⇒ B =⇒ C =⇒ D =⇒ E
must be invalid, even if one cannot immediately pinpoint where the precise
error is at the local level. Thus we see that global errors can be viewed as
“non-constructive” guarantees that a local error must exist somewhere.

A bit more subtly, one can argue using the structure of the proof itself. If
a claim such as A =⇒ E could be proven by a chain A =⇒ B =⇒ C =⇒
D =⇒ E, then this might mean that a parallel claim A′ =⇒ E′ could then
also be proven by a parallel chain A′ =⇒ B′ =⇒ C ′ =⇒ D′ =⇒ E′ of
logical reasoning. But if one also possesses a counterexample to A′ =⇒ E′,
then this implies that there is a flaw somewhere in this parallel chain, and
hence (presumably) also in the original chain. Other examples of this type
include proofs of some conclusion that mysteriously never use in any essential
way a crucial hypothesis (e.g. proofs of the non-existence of non-trivial
integer solutions to an + bn = cn that mysteriously never use the hypothesis
that n is strictly greater than 2, or which could be trivially adapted to cover
the n = 2 case).

While global errors are less constructive than local errors, and thus less
satisfying as a “smoking gun”, they tend to be significantly more robust. A
local error can often be patched or worked around, especially if the proof
is designed in a fault-tolerant fashion (e.g. if the proof proceeds by fac-
toring a difficult problem into several strictly easier pieces, which are in
turn factored into even simpler pieces, and so forth). But a global error
tends to invalidate not only the proposed proof as it stands, but also all
reasonable perturbations of that proof. For instance, a counterexample to
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A =⇒ E will automatically defeat any attempts to patch the invalid argu-
ment A =⇒ B =⇒ C =⇒ D =⇒ E, whereas the more local objection
that C does not imply D could conceivably be worked around.

It is also a lot quicker to find a global error than a local error, at least
if the paper adheres to established standards of mathematical writing. To
find a local error in an N -page paper, one basically has to read a significant
fraction of that paper line-by-line, whereas to find a global error it is often
sufficient to skim the paper to extract the large-scale structure. This can
sometimes lead to an awkward stage in the verification process when a global
error has been found, but the local error predicted by the global error has
not yet been located. Nevertheless, global errors are often the most serious
errors of all.

It is generally good practice to try to structure a proof to be fault tolerant
with respect to local errors, so that if, say, a key step in the proof of Lemma
17 fails, then the paper does not collapse completely, but contains at least
some salvageable results of independent interest, or shows a reduction of the
main problem to a simpler one. Global errors, by contrast, cannot really be
defended against by a good choice of proof structure; instead, they require
a good choice of proof strategy that anticipates global pitfalls and confronts
them directly.

One last closing remark: as error-testing is the complementary exercise
to proof-building, it is not surprising that the standards of rigour for the
two activities are dual to each other. When one is building a proof, one is
expected to adhere to the highest standards of rigour that are practical, since
a single error could well collapse the entire effort. But when one is testing
an argument for errors or other objections, then it is perfectly acceptable
to use heuristics, hand-waving, intuition, or other non-rigorous means to
locate and describe errors. This may mean that some objections to proofs
are not watertight, but instead indicate that either the proof is invalid, or
some accepted piece of mathematical intuition is in fact inaccurate. In some
cases, it is the latter possibility that is the truth, in which case the result
is deemed “paradoxical”, yet true. Such objections, even if they do not
invalidate the paper, are often very important for improving one’s intuition
about the subject.

1.3. Mathematical strength

The early twentieth century philosopher Ludwig Wittingstein famously ar-
gued that every mathematical theorem was a tautology, and thus all such
theorems contained a trivial amount of content. There is a grain of truth
to this: when a difficult mathematical problem is finally solved, it is often
the case that the solution does make the original problem look significantly
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easier than one had previously thought. Indeed, one could take the some-
what counter-intuitive point of view that progress in mathematics can be
measured by how much of mathematics has been made trivial (or at least
easier to understand than previously).

On the other hand, there is a definite sense that some mathematical
theorems are “stronger” than others, even if from a strictly logical point of
view they are equivalent. A theorem can be strong because its conclusions
are strong, because its hypotheses (or underlying axiom system used in the
proof) are weak, or for some combination of the two reasons.

What makes a theorem strong? This is not a precise, well-defined con-
cept. But one way to measure the strength of a theorem is to test it against
a class of questions and problems that the theorem is intended to assist
with solving. For instance, one might gauge the strength of a theorem in
analytic number theory by the size of the error terms it can give on various
number-theoretic quantities; one might gauge the strength of a theorem in
PDE by how large a class of initial data the theorem is applicable to, and
how much control one gets on the solution as a consequence; and so forth.

All other things being equal, universal statements (“P (x) is true for all
x”) are stronger than existential statements (“P (x) is true for some x”),
assuming of course that one is quantifying over a non-empty space. There
are also statements of intermediate strength (e.g. “P (x) is true for “many”
x”, or “P (x) is true for “almost all” x”, for suitably precise quantifications of
“many” or “almost all”). In a similar vein, statements about special types of
objects (e.g. about special functions) are usually not as strong as analogous
statements about general types of objects (e.g. arbitrary functions in some
function space), again assuming all other things are equal2.

Asymptotic statements (e.g. statements that only have content when
some parameter N is “sufficiently large”, or in the limit as N goes to in-
finity) are usually not as strong as non-asymptotic statements (which have
meaningful content even for fixed N). Again, this is assuming that all other
things are equal. In a similar vein, approximate statements are not as strong
as exact ones.

Statements about “easy” or well-understood objects are usually not as
strong as statements about “difficult” or poorly understood objects. For
instance, statements about solutions to equations over the reals tend to be
much weaker than their counterparts concerning equations over the integers;
results about linear operators tend to be much weaker than corresponding
results about nonlinear operators; statements concerning arithmetic func-
tions that are sensitive to prime factorisation (e.g. the Mobius function or

2In practice, there is often a tradeoff; to obtain more general statements, one has to weaken
the conclusion.
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von Mangoldt function) are usually significantly stronger than analogous
statements about non-arithmetical functions (e.g. the logarithm function);
and so forth.

When trying to read and understand a long and complicated proof, one
useful thing to do is to take a look at the strength of various key statements
inside the argument, and focus on those portions of the argument where the
strength of the statements increases significantly (e.g. if statements that
were only known for a few values of a variable x, somehow became amplified
into statements that were true for many instances of x). Such amplifications
often contain an essential trick or idea which powers the entire argument,
and understanding those crucial steps often brings one much closer to un-
derstanding the argument as a whole.

By the same token, if the proof ends up being flawed, it is quite likely that
at least one of the flaws will be associated with a step where the statements
being made became unexpectedly stronger by a suspiciously large amount,
and so one can use the strength of such statements as a way to quickly locate
flaws in a dubious argument.

The notion of the strength of a statement need not be absolute, but
may depend on the context. For instance, suppose one is trying to read
a convoluted argument that is claiming a statement which is true in all
dimensions d. If the argument proceeds by induction on the dimension d,
then it is useful to adopt the perspective that any statement in dimension
d+1 should be considered “stronger” than a statement in dimension d, even
if this latter statement would ordinarily be viewed as a stronger statement
than the former if the dimensions were equal. With this perspective, one is
then motivated to look for the passages in the argument in which statements
in dimension d are somehow converted to statements in dimension d+1; and
these passages are often the key to understanding the overall strategy of the
argument.

See also the blog post [Go2008] of Gowers for further discussion of this
topic.

1.4. Stable implications

A large part of high school algebra is focused on establishing implications
which are of the form “If A = B, then C = D”, or some variant thereof.
(Example: “If x2 − 5x+ 6 = 0, then x = 2 or x = 3.”)

In analysis, though, one is often more interested in a stability version of
such implications, e.g. “If A is close to B, then C is close to D”. Further-
more, one often wants quantitative bounds on how close C is to D, in terms
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of how close A is to B. (A typical example: if |x2 − 5x + 6| ≤ ε, how close
must x be to 2 or 3?)

Hilbert’s nullstellensatz (discussed for instance at [Ta2008, §1.15]) can
be viewed as a guarantee that every algebraic implication has a stable ver-
sion, though it does not provide a particularly efficient algorithm for locating
that stable version.

One way to obtain stability results explicitly is to deconstruct the proof
of the algebraic implication, and replace each step of that implication by a
stable analogue. For instance, if at some point one used an implication such
as

“If A = B, then AC = BC”

then one might instead use the stable analogue

|AC −BC| = |A−B||C|.

If one used an implication such as
“If A = B, then f(A) = f(B)”

then one might instead use a stable analogue such as

|f(A)− f(B)| ≤ K|A−B|

where K is the Lipschitz constant of f (or perhaps one may use other
stable analogues, such as the mean-value theorem or the fundamental theo-
rem of calculus). And so forth.

A simple example of this occurs when trying to find a stable analogue
of the obvious algebraic implication

“If Ai = Bi for all i = 1, . . . , n, then A1 . . . An = B1 . . . Bn,”

thus schematically one is looking for an implication of the form
“If Ai ≈ Bi for all i = 1, . . . , n, then A1 . . . An ≈ B1 . . . Bn.”

To do this, we recall how the algebraic implication is proven, namely by
successive substitution, i.e. by concatenating the n identities

A1 . . . An = B1A2 . . . An

B1A2 . . . An = B1B2A3 . . . An

. . . B1 . . . Bn−1An = B1 . . . Bn.

A stable version of these identities is given by the formula

B1 . . . Bi−1Ai . . . An−B1 . . . BiAi+1 . . . An = B1 . . . Bi−1(Ai−Bi)Ai+1 . . . An
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for i = 1, . . . , n, and so by telescoping all of these identities together we
obtain

A1 . . . An −B1 . . . Bn =

n∑
i=1

B1 . . . Bi−1(Ai −Bi)Ai+1 . . . An

which, when combined with tools such as the triangle inequality, gives a
variety of stability results of the desired form (even in situations in which
the A’s and B’s do not commute). Note that this identity is also the discrete
form of the product rule

(A1 . . . An)′ =

n∑
i=1

A1 . . . Ai−1A
′
iAi+1 . . . An

and in fact easily supplies a proof of that rule.

1.5. Notational conventions

Like any other human language, mathematical notation has a number of
implicit conventions which are usually not made explicit in the formal de-
scriptions of the language. These conventions serve a useful purpose by
conveying additional contextual data beyond the formal logical content of
the mathematical sentences.

For instance, while in principle any symbol can be used for any type of
variable, in practice individual symbols have pre-existing connotations that
make it more natural to assign them to specific variable types. For instance,
one usually uses x to denote a real number, z to denote a complex number,
and n to denote a natural number; a mathematical argument involving a
complex number x, a natural number z, and a real number n would read very
strangely. For similar reasons, x ∈ X reads a lot better than X ∈ x; sets or
classes tend to “want” to be represented by upper case letters (in Roman
or Greek) or script letters, while objects should be lower case or upper case
letters only. The most famous example of such “typecasting” is of course
the epsilon symbol in analysis; an analytical argument involving a quantity
epsilon which was very large or negative would cause a lot of unnecessary
cognitive dissonance. In contrast, by sticking to the conventional roles that
each symbol plays, the notational structure of the argument is reinforced
and made easier to remember; a reader who has temporarily forgotten the
definition of, say, “z” in an argument can at least guess that it should be a
complex number, which can assist in recalling what that definition is.

As another example from analysis, when stating an inequality such as
X < Y or X > Y , it is customary that the left-hand side represents an
“unknown” that one wishes to control, and the right-hand side represents a
more “known” quantity that one is better able to control; thus for instance
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x < 5 is preferable to 5 > x, despite the logical equivalence of the two
statements. This is why analysts make a significant distinction between
“upper bounds” and “lower bounds”; the two are not symmetric, because
in both cases is bounding an unknown quantity by a known quantity. In a
similar spirit, another convention in analysis holds that it is preferable to
bound non-negative quantities rather than non-positive ones.

Continuing the above example, if the known bound Y is itself a sum of
several terms, e.g. Y1 +Y2 +Y3, then it is customary to put the “main term”
first and the “error terms” later; thus for instance x < 1 + ε is preferable
to x < ε + 1. By adhering to this standard convention, one conveys useful
cues as to which terms are considered main terms and which ones considered
error terms.

1.6. Abstraction

It is somewhat unintuitive, but many fields of mathematics derive their
power from strategically ignoring (or *abstracting* away) various aspects
of the problems they study, in order to better focus on the key features of
such problems. For instance:

• Analysis often ignores the exact value of numerical quantities, and
instead focuses on their order of magnitude.

• Geometry often ignores explicit coordinate systems or other de-
scriptions of spaces, and instead focuses on their intrinsic proper-
ties.

• Probability studies the effects of randomness, but deliberately ig-
nores the mechanics of how random variables are actually gener-
ated. (This is in contrast to measure theory, which takes the com-
plementary point of view; see [Ta2011c, §1.1] for further discus-
sion.)

• Algebra often ignores how objects are constructed or what they are,
but focus instead on what operations can be performed on them,
and what identities these operations enjoy. (This is in contrast
to representation theory, which takes the complementary point of
view.)

• Partial differential equations often ignores the underlying physics
(or other branches of science) that gives rise to various systems of
interest, and instead only focuses on the differential equations and
boundary conditions of that system itself. (This is in contrast to,
well, physics.)
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• Modern algebraic geometry and its relatives often ignore the in-
dividual points or elements of a space, and instead focus on the
structures and maps that can be placed on top of such spaces.

• Topology, famously, ignores such distinctions as that between a
doughnut and a coffee cup, instead focusing on those qualities of
a space that are unaffected by continuous deformation or homeo-
morphism.

Sometimes it is not possible to ignore all but one aspect of a problem, but
must instead deal with two or more aspects simultaneously. Such problems
tend to require an interdisciplinary approach, blending methods from two
or more subfields of mathematics.

Another major application of abstraction in mathematics is to build a
variety of formal spaces, such as completions, compactifications, quotient
spaces, limit spaces, universal objects, etc.. These abstract spaces are pow-
erful because they reify (make real) various concepts which previously did
not make rigorous sense in the existing, more concrete spaces. For instance:

• 2 has no square root in the rationals. No problem; we pass to the
metric completion of the rationals (i.e. the real numbers), and now
the square root of 2 exists.

• −1 has no square root in the reals. No problem; we pass to the
algebraic completion of the reals (i.e. the complex numbers), and
now the square root of −1 exists.

• A sequence x1, x2, . . . may not have a limit in the space (or spaces)
that hold the points xn in this sequence. No problem; we pass to
a larger space (e.g. replacing a function space by a space of distri-
butions), or a limit space (e.g. an ultraproduct), or a completion
or compactification.

• One wants to define how “twisted” a loop is in a topological space
X, but the space is too complicated to define a notion of “wind-
ing number” or “degree” concretely. No problem: we look at the
representative of that loop in the fundamental group π1(X) of that
space, and that measures the twist. Similarly for any number of
other “obstructions”, which can be reified through “abstract non-
sense” machinery such as homology and cohomology.

So by working in a sufficiently abstract framework, one can reify just
about anything one wants; existential issues are largely eliminated. Of
course, the difficulty is now pushed elsewhere; in order to get back from
the abstract world to a concrete setting, one often has to do some non-
trivial amount of work. For instance, it is often difficult to show that an
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element that one has constructed in some abstract algebraic space is actu-
ally non-trivial, or that a solution to a PDE that one constructs in some
abstract generalised sense is actually a classical solution. But at least one
no longer has to deal with the problem that the objects one is dealing with
don’t exist at all.

1.7. Circular arguments

A circular argument such as

(1) P is true because Q is true.

(2) Q is true because P is true.

is useless as it stands. However, if the circular argument comes with a time
delay, such as

(1) For any n, P (n) is true because Q(n) is true.

(2) For any n, Q(n) is true because P (n− 1) is true.

and if one can verify a base case such as P (0), then the argument becomes
useful; this is essentially the principle of mathematical induction. There are
also continuous versions of this argument, known as continuity arguments.
For instance, if A(t) and B(t) are continuously varying quantities depending
on a parameter t ∈ R, and we know that

(1) For any t, if A(t) < X, then B(t) < Y .

(2) For any t, if B(t) < Y , then A(t) < X − ε, where ε > 0 is indepen-
dent of t (locally, at least).

Then (provided one has a base case such as A(0) < X), one can keep A(t)
bounded by X and B(t) bounded by Y for all time. This is because the
continuity of A provides a time delay between being less than X − ε, and
being greater than X.

A variant of the continuity argument is the bootstrap argument or iter-
ative argument. These arguments reflect the fact that in analysis, it is not
always necessary to obtain a 100% correct answer the first time around. In
many cases, it is enough to get an answer that is 1% closer to the truth
than your previous best guess... as long as you can iterate this process
indefinitely, and then pass to the limit3.

Examples of this principle include the contraction mapping theorem,
Newton’s method, inversion via Neumann series, the Picard existence the-
orem, the inverse function theorem, the method of parametrices, the open

3This assumes, of course, that your initial guess was a finite distance from the truth. It is

also important that the 1% gain does not dwindle to 0% prematurely, but instead remains uniform
so long as one is some distance away from the truth.



12 1. Logic and foundations

mapping theorem, the density increment argument (used for instance to
establish Roth’s theorem on arithmetic progressions [Ro1953]), and the en-
ergy increment argument (used for instance to establish Szemerédi’s regu-
larity lemma for graphs [Sz1978]).

1.8. The classical number systems

In the foundations of mathematics, the standard construction of the classical
number systems (the natural numbers N, the integers Z, the rationals Q,
the reals R, and the complex numbers C) starting from the natural numbers
N is conceptually simple: Z is the additive completion of N, Q is the
multiplicative completion of Z, R is the metric completion of Q, and C
is the algebraic completion of R. But the actual technical details of the
construction are lengthy and somewhat inelegant. Here is a typical instance
of this construction (as given for instance in [Ta2006c]):

• Z is constructed as the space of formal differences a− b of natural
numbers a, b, quotiented by additive equivalence (thus a−b ∼ c−d
iff a + d = b + c), with the arithmetic operations extended in a
manner consistent with the laws of algebra.

• Q is constructed as the space of formal quotients a/b of an integer
a and a non-zero integer b, quotiented by multiplicative equiva-
lence (thus a/b ∼ c/d iff ad = bc), with the arithmetic operations
extended in a manner consistent with the laws of algebra.

• R is constructed as the space of formal limits limn→∞ an of Cauchy
sequences an of rationals, quotiented by Cauchy equivalence (thus
limn→∞ an ∼ limn→∞ bn iff an − bn converges to zero as n goes to
infinity), with the arithmetic operations extended by continuity.

• C is constructed as the space of formal sums a+bi of two reals a, b,
with the arithmetic operations extended in a manner consistent
with the laws of algebra and the identity i2 = −1.

Remark 1.8.1. One can also perform these completions in a different order,
leading to other important number systems such as the positive rationals
Q+, the positive reals R+, the Gaussian integers Z[i], the algebraic numbers
Q̄, or the algebraic integers O.)

There is just one slight problem with all this: technically, with these
constructions, the natural numbers are not a subset of the integers, the
integers are not a subset of the rationals, the rationals are not a subset
of the reals, and the reals are not a subset of the complex numbers! For
instance, with the above definitions, an integer is an equivalence class of
formal differences a − b of natural numbers. A natural number such as
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3 is not then an integer. Instead, there is a canonical embedding of the
natural numbers into the integers, which for instance identifies 3 with the
equivalence class

{3− 0, 4− 1, 5− 2, . . .}.
Similarly for the other number systems. So, rather than having a sequence
of inclusions

N ⊂ Z ⊂ Q ⊂ R ⊂ C

, what we have here is a sequence of canonical embeddings

N ↪→ Z ↪→ Q ↪→ R ↪→ C.

In practice, of course, this is not a problem, because we simply identify a
natural number with its integer counterpart, and similarly for the rest of the
chain of embeddings. At an ontological level, this may seem a bit messy - the
number 3, for instance is now simultaneously a natural number, an equiv-
alence class of formal differences of natural numbers, and equivalence class
of formal quotients of equivalence classes of formal differences of natural
numbers, and so forth; but the beauty of the axiomatic approach to mathe-
matics is that it is almost completely irrelevant exactly how one chooses to
model a mathematical object such as 3, so long as all the relevant axioms
concerning one’s objects are verified, and so one can ignore such questions
as what a number actually is once the foundations of one’s mathematics
have been completed.

Remark 1.8.2. As an alternative approach, one can carefully keep all the
number systems disjoint by using distinct notation for each; for instance, one
could distinguish between the natural number 3, the integer +3, the rational
3/1, the real number 3.0, and the complex number 3.0 + i0.0. This type of
distinction is useful in some situations, for instance when writing mathe-
matical computer code, but in most cases it is more convenient to collapse
all these distinctions and perform the identifications mentioned above.

Another way of thinking about this is to define a (classical) number to
be an element not of any one of the above number systems per se, but rather
of the direct limit

lim
→

(N ↪→ Z ↪→ Q ↪→ R ↪→ C)

of the canonical embeddings. Recall that the direct limit

lim
→

(. . .→ An−1 → An → An+1 → . . .)

of a sequence of sets (or objects in set-like categories, e.g. groups, vector
spaces, etc.) chained together by maps (or morphisms, for more general
categories) fn : An → An+1 is the space of sequences (an0 , an0+1, . . .) of
elements of some terminal segment An0 → An0+1 → . . . of the sequence of



14 1. Logic and foundations

sets, such that the sequence of elements is compatible with the maps (i.e.
an+1 = fn(an) for all n ≥ n0), and then quotiented by tail equivalence:
two sequences (an0 , an0+1, . . .) and (a10 , bn1+1, . . .) are equivalent iff they
eventually agree (i.e. an = bn for all sufficiently large n).

Remark 1.8.3. Direct limits also have an elegant category-theoretic def-
inition; the direct limit A of the above sequence can be defined (up to
isomorphism) as a universal object for the commutative diagram

. . .→ An−1 → An → An+1 → . . .→ A,

which means that every other competitor B to the direct limit (i.e. any
commutative diagram of the form

. . .→ An−1 → An → An+1 → . . .→ B

factors uniquely through A.

There is also an important dual notion of a direct limit, namely the
inverse limit

lim
←

(. . .→ An−1 → An → An+1 → . . .)

of a sequence, which is defined similarly to the direct limits but using initial
segments of the sequence rather than terminal segments. Whereas direct
limits seek to build a canonical space in which all the elements of the se-
quence embed, inverse limits seek to build a canonical space for which all
the elements of the sequence are projections. A classic example of an in-
verse limit is the p-adic number system Zp, which is the inverse limit of the
cyclic groups Z/pnZ. Another example is the real number system R, which
can be viewed as the inverse limit of the finite-precision number systems
10−nZ (using arithmetic operations with rounding, and using rounding to
map each finite precision number system to the next coarsest system); this
is a different way to construct the real numbers than the one given above,
but the two constructions can eventually be shown to be equivalent.

Direct limits and inverse limits can be generalised even further; in cate-
gory theory, one can often take limits and colimits of more general diagrams
than sequences. This gives a rich source of constructions of abstract spaces
(e.g. direct sums or direct products) that are convenient places to do math-
ematics in, as they can connect to many otherwise distinct classes of math-
ematical structures simultaneously. For instance, the adele ring, which is
the direct product of the reals and the p-adics, is a useful universal number
system in algebraic number theory, which among other things can be used
to greatly clarify the nature of the functional equation of the Riemann zeta
function (see e.g. [Ta2009, §1.5] for further discussion).
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1.9. Round numbers

It is a convention in popular culture to use round numbers as milestones
in order to reflect on the progress of some statistic, such as when a major
stock index passes, say, the 10, 000 level. People often celebrate their birth-
days each year, and also use the new year to make resolutions; institutions
similarly observe centenaries and other round number milestones.

Of course, thanks to the artificial nature of both our system of units,
and also our decimal system to express numbers, such milestones have no
particular intrinsic significance; a day in which the Dow Jones Industrial
Average, for instance, crosses 10, 000 is not intrinsically much different from
a day in which the Dow Jones crosses 10764, or 213, or any other number.

However, there is some value in selecting some set of milestones of a given
spacing (or log-spacing) in order to set up a periodic schedule in which to
focus occasional attention on a topic. For instance, it is certainly useful to
spend some time occasionally reflecting on one’s past and making resolutions
for one’s future, but one should not spend every day of one’s life doing
so. Instead, the optimal fraction of time that one should invest in this is
probably closer to 1/365 than to 1/1. As such, the convention to use the
first of January of each year to devote to this is not such a bad one, though
of course it is ultimately a somewhat arbitrary choice.

Similarly, for the majority of people who are not professional stock
traders, the daily fluctuations of an index such as the Dow Jones are too
noisy to be of much informational value; but if one only pays attention to
this index when it crosses a multiple4 of 1000, then this already gives a crude
picture of the direction of the market that is sufficient for a first approxima-
tion, without requiring too much of one’s time to be spent looking at this
index.

At a somewhat less frivolous level, one advantage of selecting a conven-
tional set of preferred numbers is that it allows for easier comparison and
interchangeability between people, objects, and institutions. For instance,
companies who report their financial results on a quarterly basis can be eas-
ily compared to each other, as opposed to companies who report at irregular
or idiosyncratic schedules. In order to have interchangeability between re-
sistors made by different manufacturers, the resistance is by convention set
to lie in a discrete set of preferred numbers that are roughly equally spaced
in log-scale (and which are famously colour-coded to indicate this number).

4Note though that if this index changed value by an order of magnitude or more, then one

should presumably replace multiples of 1000 with an appropriately rescaled multiple. Ideally one
should use milestones that are equally spaced in log-scale rather than in absolute scal, but with

the decimal system the round numbers that do this (i.e. the powers of 10) are too far apart to be
sufficiently useful.
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Many other dimensions of standard objects (e.g. dimensions of a sheet of pa-
per, of which A4 is the most well-known) use some sort of preferred number
scheme, leading to a useful degree of interoperability5.

1.10. The “no self-defeating object” argument, revisited

One notable feature of mathematical reasoning is the reliance on counter-
factual thinking - taking a hypothesis (or set of hypotheses) which may or
may not be true, and following it (or them) to its logical conclusion. For
instance, most propositions in mathematics start with a set of hypotheses
(e.g. “Let n be a natural number such that ...”), which may or may not
apply to the particular value of n one may have in mind. Or, if one ever
argues by dividing into separate cases (e.g. “Case 1: n is even. ... Case 2: n
is odd. ...”), then for any given n, at most one of these cases would actually
be applicable, with the other cases being counterfactual alternatives. But
the purest example of counterfactual thinking in mathematics comes when
one employs a proof by contradiction6 (or reductio ad absurdum) - one in-
troduces a hypothesis that in fact has no chance of being true at all (e.g.
“Suppose for sake of contradiction that

√
2 is equal to the ratio p/q of two

natural numbers.”), and proceeds to demonstrate this fact by showing that
this hypothesis leads to absurdity.

Experienced mathematicians are so used to this type of counterfactual
thinking that it is sometimes difficult for them to realise that it this type of
thinking is not automatically intuitive for students or non-mathematicians,
who can anchor their thinking on the single, “real” world to the extent
that they cannot easily consider hypothetical alternatives. This can lead to
confused exchanges such as the following:

Lecturer: “Theorem. Let p be a prime number. Then...”
Student: “But how do you know that p is a prime

number? Couldn’t it be composite?”

or

Lecturer: “Now we see what the function f does when we
give it the input of x+ dx instead. ...”

5In contrast, items such as tupperware are usually not fixed to preferred dimensions, leading

to a frustrating lack of compatibility between lids and containers from different manufacturers.
6Strictly speaking, there are two types of proofs by contradiction: genuine proofs by contra-

diction, which proves a statement A is true by showing that the negation ¬A leads to absurdity,

and proofs by negation, which proofs a statement A is false by showing that A leads to absurdity.

In classical logic, which enjoys the law of excluded middle, the two types of argument are logically
equivalent, but in other logics, such as intuitionistic logic, the two types of arguments need to be

carefully distinguished. However, this distinction is somewhat orthogonal to the discussion in this
article. We thank Andrej Bauer for emphasising this point.
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Student: “But didn’t you just say that the input was
equal to x just a moment ago?”

This is not to say that counterfactual thinking is not encountered at all
outside of mathematics. For instance, an obvious source of counterfactual
thinking occurs in fictional writing or film, particularly in speculative fiction
such as science fiction, fantasy, or alternate history. Here, one can certainly
take one or more counterfactual hypotheses (e.g. “what if magic really ex-
isted?”) and follow them to see what conclusions would result. The analogy
between this and mathematical counterfactual reasoning is not perfect, of
course: in fiction, consequences are usually not logically entailed by their
premises, but are instead driven by more contingent considerations, such as
the need to advance the plot, to entertain or emotionally affect the reader,
or to make some moral or ideological point, and these types of narrative ele-
ments are almost completely absent in mathematical writing. Nevertheless,
the analogy can be somewhat helpful when one is first coming to terms with
mathematical reasoning. For instance, the mathematical concept of a proof
by contradiction can be viewed as roughly analogous in some ways to such
literary concepts as satire, dark humour, or absurdist fiction, in which one
takes a premise specifically with the intent to derive absurd consequences
from it. And if the proof of (say) a lemma is analogous to a short story,
then the statement of that lemma can be viewed as analogous to the moral
of that story.

Another source of counterfactual thinking outside of mathematics comes
from simulation, when one feeds some initial data or hypotheses (that may
or may not correspond to what actually happens in the real world) into
a simulated environment (e.g. a piece of computer software, a laboratory
experiment, or even just a thought-experiment), and then runs the simu-
lation to see what consequences result from these hypotheses. Here, proof
by contradiction is roughly analogous to the “garbage in, garbage out” phe-
nomenon that is familiar to anyone who has worked with computers: if one’s
initial inputs to a simulation are not consistent with the hypotheses of that
simulation, or with each other, one can obtain bizarrely illogical (and some-
times unintentionally amusing) outputs as a result; and conversely, such
outputs can be used to detect and diagnose problems with the data, hy-
potheses, or implementation of the simulation.

A final example of counterfactual thinking in everyday experience is that
of law7; any case involving damages, for instance, will often need to consider
a hypothetical world in which the criminal act did not occur, in order to

7I thank David Tweed for this example
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compare the actual world against. In a similar spirit, an adversarial cross-
examination, designed to poke holes in an alibi, can be viewed as roughly
analogous to a proof by contradiction.

Despite the presence of these non-mathematical analogies, though, proofs
by contradiction are still often viewed with suspicion and unease by many
students of mathematics. Perhaps the quintessential example of this is the
standard proof of Cantor’s theorem that the set R of real numbers is un-
countable. This is about as short and as elegant a proof by contradiction
as one can have without being utterly trivial, and despite this (or perhaps
because of this) it seems to offend the reason of many people when they
are first exposed to it, to an extent far greater than most other results in
mathematics8.

In [Ta2010b, §1.15], I collected a family of well-known results in mathe-
matics that were proven by contradiction, and specifically by a type of argu-
ment that I called the “no self-defeating object” argument; that any object
that was so ridiculously overpowered that it could be used to “defeat” its
own existence, could not actually exist. Many basic results in mathematics
can be phrased in this manner: not only Cantor’s theorem, but Euclid’s
theorem on the infinitude of primes, Gdel’s incompleteness theorem, or the
conclusion (from Russell’s paradox) that the class of all sets cannot itself be
a set.

In [Ta2010b, §1.15] each of these arguments was presented in the usual
“proof by contradiction” manner; I made the counterfactual hypothesis that
the impossibly overpowered object existed, and then used this to eventually
derive a contradiction. Mathematically, there is nothing wrong with this
reasoning, but because the argument spends almost its entire duration in-
side the bizarre counterfactual universe caused by an impossible hypothesis,
readers who are not experienced with counterfactual thinking may view
these arguments with unease.

It was pointed out to me, though (originally with regards to Euclid’s
theorem, but the same point in fact applies to the other results I presented)
that one can pull a large fraction of each argument out of this counterfactual
world, so that one can see most of the argument directly, without the need for
any intrinsically impossible hypotheses. This is done by converting the “no
self-defeating object” argument into a logically equivalent “any object can
be defeated” argument, with the former then being viewed as an immediate
corollary of the latter. This change is almost trivial to enact (it is often
little more than just taking the contrapositive of the original statement),

8The only other two examples I know of that come close to doing this are the fact that the

real number 0.999 . . . is equal to 1, and the solution to the blue-eyed islanders puzzle (see [Ta2009,
§1.1]).
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but it does offer a slightly different “non-counterfactual” (or more precisely,
“not necessarily counterfactual”) perspective on these arguments which may
assist in understanding how they work.

For instance, consider the very first no-self-defeating result presented in
[Ta2010, §1.15]:

Proposition 1.10.1 (No largest natural number). There does not exist a
natural number N that is larger than all the other natural numbers.

This is formulated in the “no self-defeating object” formulation. But it
has a logically equivalent “any object can be defeated” form:

Proposition 1.10.2. Given any natural number N , one can find another
natural number N ′ which is larger than N .

Proof. Take N ′ := N + 1. �

While Proposition 1.10.1 and Proposition 1.10.2 are logically equivalent
to each other, note one key difference: Proposition 1.10.2 can be illustrated
with examples (e.g. take N = 100, so that the proof gives N ′ = 101 ), whilst
Proposition 1.10.1 cannot (since there is, after all, no such thing as a largest
natural number). So there is a sense in which Proposition 1.10.2 is more
“constructive” or “non-counterfactual” than Proposition 1.10.1.

In a similar spirit, Euclid’s theorem,

Proposition 1.10.3 (Euclid’s theorem). There are infinitely many primes.

can be recast in “all objects can be defeated” form as

Proposition 1.10.4. Let p1, . . . , pn be a collection of primes. Then there
exists a prime q which is distinct from any of the primes p1, . . . , pn.

Proof. Take q to be any prime factor of p1 . . . pn+1 (for instance, one could
take the smallest prime factor, if one wished to be completely concrete).
Since p1 . . . pn + 1 is not divisible by any of the primes p1, . . . , pn, q must be
distinct from all of these primes. �

One could argue that there was a slight use of proof by contradiction
in the proof of Proposition 1.10.4 (because one had to briefly entertain and
then rule out the counterfactual possibility that q was equal to one of the
p1, . . . , pn), but the proposition itself is not inherently counterfactual, as it
does not make as patently impossible a hypothesis as a finite enumeration
of the primes. Incidentally, it can be argued that the proof of Proposition
1.10.4 is closer in spirit to Euclid’s original proof of his theorem, than the
proof of Proposition 1.10.3 that is usually given today. Again, Proposition
1.10.4 is “constructive”; one can apply it to any finite list of primes, say
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2, 3, 5, and it will actually exhibit a prime not in that list (in this case,
31). The same cannot be said of Proposition 1.10.3, despite the logical
equivalence of the two statements.

Remark 1.10.5. It is best to avoid long proofs by contradiction which con-
sist of many parts, each of which is different to convert to a non-counterfactual
form. One sees this sometimes in attempts by amateurs to prove, say, the
Riemann hypothesis; one starts with assuming a zero off of the critical line,
and then derives a large number of random statements both using this fact,
and not using this fact. At some point, one makes an error (e.g. division
by zero), but one does not notice it until several pages later, when two of
the equations derived disagree with each other. At this point, the author
triumphantly declares victory.

On the other hand, there are many valid long proofs by contradiction in
the literature. For instance, in PDE, a common and powerful way to show
that a solution to an evolution equation exists for all time is to assume that it
doesnt, and deduce that it must develop a singularity somewhere. One then
applies an increasingly sophisticated sequence of analytical tools to control
and understand this singularity, until one eventually is able to show that the
singularity has an impossible nature (e.g. some limiting asymptotic profile
of this singularity has a positive norm in one function space, and a zero norm
in another). In many cases this is the only known way to obtain a global
regularity result, but most of the proof is left in the counterfactual world
where singularities exist. But, the use of contradiction is often “shallow”,
in that large parts of the proof can be converted into non-counterfactual
form (and indeed, if one looks at the actual proof, it is usually the case that
most of the key lemmas and sub-propositions in the proof are stated non-
counterfactually). In fact, there are two closely related arguments in PDE,
known as the “no minimal energy blowup solution” argument, and the “in-
duction on energy” argument, which are related to each other in much the
same way as the well-ordering principle is to the principle of mathematical
induction (or the way that the “no self-defeating object” argument is related
to the “every object can be defeated” argument); the former is counterfac-
tual and significantly simpler, the latter is not but requires much lengthier
and messier arguments. But it is generally accepted that the two methods
are, on some level, equivalent. (See [KiVa2008] for further discussion of
these arguments.)

As an analogy, one can think of a long proof as a long rope connecting
point A (the hypotheses) to point B (the conclusion). This rope may be
submerged in murky water (the counterfactual world) or held up above it
(the non-counterfactual world). A proof by contradiction thus is like a rope
that is almost completely submerged underwater, but as long as the rope is
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only shallowly underwater, one can still see it well enough to conclude that
it is unbroken. But if it sinks too far into the depths of the counterfactual
world, then it becomes suspicious.

Finding a non-counterfactual formulation of an argument then resembles
the action of lifting the rope up so that it is mostly above water (though,
if either the hypothesis A or conclusion B are negative in nature (and thus
underwater), one must still spend a tiny fraction of the argument at least in
the counterfactual world; also, the proof of the non-counterfactual statement
may still occasionally use contradiction, so the rope may still dip below the
water now and then). This can make the argument clearer, but it is also a
bit tiring to lift the entire rope up this way; if ones objective is simply to
connect A toB in the quickest way possible, letting the rope slide underwater
is often the simplest solution.

1.10.1. Set theory. Now we revisit examples of the no-self-defeating ob-
ject in set theory. Take, for instance, Cantor’s theorem:

Proposition 1.10.6 (Cantor’s theorem). The reals are uncountable.

One can easily recast this in a “non-counterfactual” or “all objects can
be defeated” form:

Proposition 1.10.7. Let x1, x2, x3, . . . be a countable sequence of real num-
bers (possibly with repetition). Then there exists a real number y that is not
equal to any of the x1, x2, x3, . . ..

Proof. Set y equal to y = 0.a1a2a3 . . ., where

(1) a1 is the smallest digit in {0, . . . , 9} that is not equal to the first
digit past the decimal point of any9 decimal representation of x1;

(2) a2 is the smallest digit in {0, . . . , 9} that is not equal to the second
digit past the decimal point of any decimal representation of x2;

(3) etc.

Note that any real number has at most two decimal representations, and
there are ten digits available, so one can always find a1, a2, . . . with the
desired properties. Then, by construction, the real number y cannot equal
x1 (because it differs in the first digit from any of the decimal representations
of x1), it cannot equal x2 (because it differs in the second digit), and so
forth. �

9Here we write “any” decimal representation rather than “the” decimal representation to
deal with the annoying 0.999 . . . = 1.000 . . . issue mentioned earlier. As with the proof of Euclid’s

theorem, there is nothing special about taking the smallest digit here; this is just for sake of
concreteness.
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Again, Proposition 1.10.7 is trivially equivalent to Proposition 1.10.6,
and still briefly uses contradiction in its proof, but in this non-counterfactual
form one can actually illustrate it with examples. For instance, one could
start with a list of terminating decimals, starting with the single digit ter-
minating decimals, the two-digit terminating decimals, and so forth:

x1 := 0.1, x2 := 0.2, x3 := 0.3, . . . x9 := 0.9,

x10 := 0.01, x11 := 0.02, . . . x108 := 0.99,

x109 := 0.001, x110 := 0.002, . . . x1007 := 0.999,

. . .

and one then sees that the construction will, in this case, give the number
y = 0.21111 . . ., which indeed does not occur on the above list.

It is instructive to try to “outrun” Proposition 1.10.7 by modifying the
list to accommodate 0.2111 . . . to the list. One cannot simply tack on this
number “at the end” of this list, as the list is infinite and does not actually
have an end. One can insert it at, say, the beginning of the list, and then
move all the other numbers down one, but then Proposition 1.10.7 gives a
new number not on the list (in this case, 0.0111 . . .). One can add that num-
ber to the list also, bumping everyone else down one, but then Proposition
1.10.7 gives yet another number not on the list (in this case, 0.10111 . . .).
After doing this a few times, one can begin to appreciate how Proposition
1.10.7 always defeats any attempt to outrun it, much as one cannot obtain a
largest natural number by continually adding +1 to one’s previous proposed
candidate.

It is also remarkable how inoffensive Proposition 1.10.7 and its proof is,
when compared against the reaction one sometimes encounters to Proposi-
tion 1.10.6, which is logically equivalent. A single contraposition can dra-
matically change one’s impression of a result.

In a similar spirit, the result

Proposition 1.10.8 (No universal set). There does not exist a set that
contains all sets (including itself).

(which, of course, assumes one is working in something like the Zermelo-
Frankel axioms of set theory) becomes

Proposition 1.10.9. Given any set A, there exists a set B which is not an
element of A.

Proof. Consider the set

B := {C ∈ A : C 6∈ C};
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the existence of this set is guaranteed by the axiom schema of specification.
If B was an element of itself, then by construction we would have B 6∈ B,
a contradiction. Thus we must have B 6∈ B. From construction, this forces
B 6∈ A. �

In the usual axiomatic formulation of set theory, the axiom of foundation
implies, among other things, that no set is an element of itself. With that
axiom, the set B given by Proposition 1.10.9 is nothing other than A itself,
which by the axiom of foundation is not an element of A. But since the
axiom of foundation was not used in the proof of Proposition 1.10.9, one
can also explore (counterfactually!) what happens in set theories in which
one does not assume the axiom of foundation. Suppose, for instance, that
one managed somehow to produce a set A that contained itself10 as its only
element: A = {A}. Then the only element that A has, namely A, is an
element of itself, so the set B produced by Proposition 1.10.9 is the empty
set B := ∅, which is indeed not in A.

One can try outrunning Proposition 1.10.9 again to see what happens.
For instance, let’s add the empty set to the set A produced earlier, to give
the new set A′ := {A, ∅}. The construction used to prove Proposition 1.10.9
then gives the set B = {∅}, which is indeed not in A′. If we then try to
add that set in to get a new set A′′ := {A, ∅, {∅}}, then one gets the set
B = {∅, {∅}}, which is again not in A′′. Iterating this, one in fact begins
constructing the11 von Neumann ordinals.

1.10.2. Logic. One can also convert the no-self-defeating arguments given
in the logic section of the previous post into “every object can be defeated”
forms, though these were more difficult for me to locate. We first turn to
the result (essentially coming from the liar paradox) that the notion of truth
cannot be captured by a predicate. We begin with the easier “self-referential
case”:

Theorem 1.10.10 (Impredicativity of truth, self-referential case). (Infor-
mal statement) Let L be a formal language that contains the concepts of pred-
icates and allows self-reference, and let M be an interpretation of that lan-
guage (i.e. a way of consistently assigning values to every constant, ranges
to every variable, and truth values to every sentence in that language, obey-
ing all the axioms of that language). Then there does not exist a “truth
predicate” T (x) in L that takes a sentence x as input, with the property that
for every sentence x in L, that T (x) is true (in M) if and only if x is true
(in M).

10Informally, one could think of A as an infinite nested chain, A := {{{. . .}}}.
11Actually, the original set A plays essentially no role in this construction; one could have

started with the empty set and it would have generated the same sequence of ordinals.
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Here is the non-counterfactual version:

Theorem 1.10.11. (Informal statement) Let L be a formal language that
contains the concepts of predicates and strings and allows self-reference, and
let M be an interpretation of that language. Let T () be a predicate in L that
takes sentences as input. Then there exists a sentence G such that the truth
value of T (G) (in M) is different from the truth value of G (in M).

Proof. We define G be the self-referential “liar sentence”

G := “T (G) is false”.

Then, clearly, G is true if and only if T (G) is false, and the claim follows. �

Using the Quining trick to achieve indirect self-reference, one can remove
the need for direct self-reference in the above argument:

Theorem 1.10.12 (Impredicativity of truth). (Informal statement) Let L
be a formal language that contains the concepts of predicates and strings,
and let M be an interpretation of that language (i.e. a way of consistently
assigning values to every constant, ranges to every variable, and truth values
to every sentence in that language) that interprets strings in the standard
manner (so in particular, every sentence or predicate in L can also be viewed
as a string constant in M). Then there does not exist a “truth predicate”
T (x) in L that takes a string x as input, with the property that for every
sentence x in L, that T (x) is true (in M) if and only if x is true (in M).

Remark 1.10.13. A more formal version of the above theorem is given by
Tarski’s undefinability theorem, which can be found in any graduate text on
logic.

Here is the non-counterfactual version:

Theorem 1.10.14. (Informal statement) Let L be a formal language con-
taining the concepts of predicates and strings, and let T (x) be a predicate on
strings. Then there exists a sentence G in L with the property that, for any
interpretation M of L that interprets strings in the standard manner,that
the truth value of T (G) in M is different from the truth value of G in M .

Proof. (Sketch) We use the “quining” trick. Let Q(x) be the predicate on
strings defined by

Q(x) := “x is a predicate on strings, and T (x(x)) is false”

and let G be the Gödel sentence G := Q(Q). Then, by construction, G is
true in M if and only if T (G) is false in M , and the claim follows. �
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Actually Theorem 1.10.14 is marginally stronger than Theorem 1.10.6
because it makes the sentence G independent of the interpretation M ,
whereas Theorem 1.10.12 (when viewed in the contrapositive) allows G to
depend on M . This slight strengthening will be useful shortly.

An important special case of Theorem 1.10.14 is the first incompleteness
theorem:

Corollary 1.10.15 (Gödel’s first incompleteness theorem). (Informal state-
ment) Let L be a formal language containing the concepts of predicates and
strings that has at least one interpretation M that gives the standard inter-
pretation of strings (in particular, L must be consistent). Then there exists
a sentence G in L that is undecidable in L (or more precisely, in a formal
recursive proof system for L).

Proof. (Sketch) A language L that is powerful enough to contain predicates
and strings will also be able to contain a provability predicate P (), so that a
sentence x in L is provable in L’s proof system if and only if P (x) is true in
the standard interpretation M . Applying Theorem 1.10.14 to this predicate,
we obtain a Gödel sentence G such that the truth value of G in M differs
from the truth value of P (G) in M . If P (G) is true in M , then G must be
true in M also since L is consistent, so the only remaining option is that
P (G) is false in M and G is true in M . Thus neither G nor its negation can
be provable, and hence G is undecidable. �

Now we turn to the second incompleteness theorem:

Theorem 1.10.16 (Gödel’s second incompleteness theorem). (Informal
statement) No consistent logical system which has the notion of a predicate
and a string, can provide a proof of its own logical consistency.

Here is the non-counterfactual version:

Theorem 1.10.17. (Informal statement) Let L,L′ be consistent logical sys-
tems that have the notion of a predicate and a string, such that every sen-
tence in L′ is also a sentence in L, and such that the consistency of L′ can
be proven in L. Then there exists a sentence G that lies in both L and L′

that is provable in L but is not provable in L′.

Proof. (Sketch) In the common language of L and L′, let T () be the pred-
icate

T (x) := “x is provable in L′”.

Applying Theorem 1.10.14, we can find a sentence G (common to both L
and L′) with the property that in any interpretation M of either L or L′,
the truth value of G and the truth value of T (G) differ.
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By Corollary 1.10.15 (or more precisely, the proof of that corollary), G
is not provable in L′. Now we show that G is provable in L. Because L can
prove the consistency of L′, one can embed the proof of Corollary 1.10.15
inside the language L, and deduce that the sentence “G is not provable in
L′” is also provable in L. In other words, L can prove that T (G) is false.
On the other hand, embedding the proof of Theorem 1.10.14 inside L, L can
also prove that the truth value of G and T (G) differ. Thus L can prove that
G is true. �

The advantage of this formulation of the second incompleteness theo-
rem, as opposed to the usual counterfactual one, is that one can actually
trace through the argument with a concrete example. For instance, Zermelo-
Frankel-Choice (ZFC) set theory can prove the consistency of Peano arith-
metic (a result of Gentzen [Ge1936]), and so one can follow the above
argument to show that the Gödel sentence of Peano arithmetic is provably
true in ZFC, but not provable in Peano arithmetic.

1.10.3. Computability. By now, it should not be surprising that the no-
self-defeating arguments in computability also have a non-counterfactual
form, given how close they are to the analogous arguments in set theory and
logic. For sake of completeness, we record this for Turing’s theorem:

Theorem 1.10.18 (Turing halting theorem). (Informal statement) There
does not exist a program P which takes a string S as input, and determines
in finite time whether S is a program (with no input) that halts in finite
time.

Here is the non-counterfactual version:

Theorem 1.10.19. (Informal statement) Let P be a program that takes
a string S as input, returns a yes-no answer P (S) as output, and which
always halts in finite time. Then there exists a string G that is a program
with no input, such that if P is given G as input, then P does not determine
correctly whether G halts in finite time.

Proof. Define Q() to be the program taking a string R as input which does
the following:

(1) If R is not a program that takes a string as input, it halts.

(2) Otherwise, it runs P with input R(R) (which is a program with no
input).

(3) If P (R(R)) returns “no”, it halts, while if P (R(R)) returns “yes”,
it runs forever.

Now, let G be the program Q(Q). By construction, G halts if and only
if P (G) returns “no”, and the claim follows. �
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One can apply Theorem 1.10.19 to various naive halting algorithms.
For instance, let P (S) be the program that simulates S for (say) 1000 CPU
cycles, and then returns “yes” if S halted by that time, or ”no” otherwise.
Then the program G generated by the above proof will take more than 1000
CPU cycles to execute, and so P will determine incorrectly whether G halted
or not. (Notice the similarity here with Proposition 1.10.2.)

The same argument also gives a non-counterfactual version of the non-
computability of the busy beaver function:

Proposition 1.10.20. Let f : N → N be a computable function. Then
there exists a natural number n and a program G of length n (and taking
no input) that halts in finite time, but requires more than f(n) CPU cycles
before it halts.

Proof. Let P (S) be the program that simulates S for f(n) CPU cycles,
where n is the length of S, and returns “yes” if S halted by that time, or
“no” otherwise. Then the program G generated by Theorem 1.10.19 is such
that P does not correctly determine if G halts. Since P is always correct
when it returns “yes”, this means that G does halt, but that P (G) returned
“no”, which implies that G takes more than f(n) cycles to execute. �

Of course, once one has a program of length n that runs for more than
f(n) CPU cycles, it is not hard to make a program of length a little bit
larger than n that outputs a number greater than f(n), so that one can con-
clude as a corollary that the Busy Beaver function outgrows any computable
function.

1.10.4. Miscellaneous. The strategy stealing argument in game theory is
already more or less set up in non-counterfactual form: in any game that
admits “harmless moves” (such as noughts and crosses), any strategy of the
second player can be stolen to be defeated (or at least held to a draw) by
the first player. Similarly for arbitrage strategies in finance (unless there are
loopholes due to imperfect information or friction costs).

It is a bit more difficult to recast the no-self-defeating objects in physics
in a non-counterfactual form, due to the large number of implicit physical
assumptions in these arguments. I will present just one simple example
of this, which is the grandfather paradox that asserts that controlled time
travel is impossible because you could use such travel to go back in time
to kill your grandfather before you were born. One can convert this to a
slightly less counterfactual format:

“Theorem” 1.10.21. ( Very imprecisely stated!) Suppose that one has a
mechanism in universe U to travel back in time and arrive at universe U ′.
Then there can exist events in U that occurred differently in universe U ′.
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The “proof” is, of course, the same: starting from U , go back in time
and kill your grandfather in universe U ′. This version of the “theorem”
(though not the precise “proof” given here) is of course invoked often in
many science fiction stories involving time travel.

It seems possible to also cast the no-immovable-objects and no-controlled-
and-detectable-tachyon-particles arguments from [Ta2010b, §1.15] in this
form, but one would have to consider multiple universes to do this properly,
and I will not attempt to do so here, as it appears to be rather complicated.

The omnipotence paradox in philosophy (can an omnipotent being create
a stone so heavy that He cannot lift it?) can also be rephrased in a non-
counterfactual form that does not require consideration of any omnipotent
beings:

“Theorem” 1.10.22. If G is a being, then G will be unable to do at least
one of the following two tasks:

(1) Create a stone so heavy that G cannot lift it.

(2) Be able to lift any possible stone.

Of course, most beings will fail at both Task 1 and Task 2.

1.11. The “no self-defeating object” argument, and the
vagueness paradox

We continue our discussion of the “no self-defeating object” argument in
mathematics - a powerful and useful argument based on formalising the
observation that any object or structure that is so powerful that it can
“defeat” even itself, cannot actually exist. This argument is used to establish
many basic impossibility results in mathematics, such as Gödel’s theorem
that it is impossible for any sufficiently sophisticated formal axiom system
to prove its own consistency, Turing’s theorem that it is impossible for any
sufficiently sophisticated programming language to solve its own halting
problem, or Cantor’s theorem that it is impossible for any set to enumerate
its own power set (and as a corollary, the natural numbers cannot enumerate
the real numbers).

As remarked in the previous section, many people who encounter these
theorems can feel uneasy about their conclusions, and their method of proof;
this seems to be particularly the case with regard to Cantor’s result that
the reals are uncountable. In the previous post in this series, I focused on
one particular aspect of the standard proofs which one might be uncom-
fortable with, namely their counterfactual nature, and observed that many
of these proofs can be largely (though not completely) converted to non-
counterfactual form. However, this does not fully dispel the sense that the
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conclusions of these theorems - that the reals are not countable, that the
class of all sets is not itself a set, that truth cannot be captured by a predi-
cate, that consistency is not provable, etc. - are highly unintuitive, and even
objectionable to “common sense” in some cases.

How can intuition lead one to doubt the conclusions of these mathemat-
ical results? I believe that one reason is because these results are sensitive
to the amount of vagueness in one’s mental model of mathematics. In the
formal mathematical world, where every statement is either absolutely true
or absolutely false with no middle ground, and all concepts require a precise
definition (or at least a precise axiomatisation) before they can be used,
then one can rigorously state and prove Cantor’s theorem, Gdel’s theorem,
and all the other results mentioned in the previous posts without difficulty.
However, in the vague and fuzzy world of mathematical intuition, in which
one’s impression of the truth or falsity of a statement may be influenced by
recent mental reference points, definitions are malleable and blurry with no
sharp dividing lines between what is and what is not covered by such def-
initions, and key mathematical objects may be incompletely specified and
thus “moving targets” subject to interpretation, then one can argue with
some degree of justification that the conclusions of the above results are
incorrect; in the vague world, it seems quite plausible that one can always
enumerate all the real numbers ‘that one needs to”, one can always justify
the consistency of one’s reasoning system, one can reason using truth as if
it were a predicate, and so forth. The impossibility results only kick in once
one tries to clear away the fog of vagueness and nail down all the definitions
and mathematical statements precisely12.

One can already see this with one of the most basic conclusions of the
“no self-defeating object” argument, namely that the set of natural numbers
is infinite. Let me rephrase this result in the following manner:

Proposition 1.11.1. Let A be a set of natural numbers with the following
properties:

(1) 0 lies in A.

(2) Whenever a natural number n lies in A, then its successor n + 1
also lies in A.

Then A is infinite13.

12To put it another way, the no-self-defeating object argument relies very much on the
disconnected, definite, and absolute nature of the boolean truth space {true, false} in the rigorous

mathematical world. If one works in a “fuzzier” model of truth, such as Bayesian probability (see

Section 6.9), then it becomes possible for vaguely defined objects to exist, even when they would
become self-defeating in a classical truth model.

13Here, infinite has its usual set theoretic meaning, i.e. the conclusion is that A cannot be
placed in bijection with a set of the form {1, . . . , n} for any natural number n.
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Indeed, from the principle of mathematical induction, the hypotheses
of Proposition 1 force A to be the entire set of natural numbers, and so
Proposition 1.11.1 is logically equivalent to the assertion that the set of
natural numbers is infinite.

In the rigorous world of formal mathematics, Proposition 1.11.1 is of
course uncontroversial, and is easily proven by a simple “no self-defeating
object” argument:

Proof. Suppose for contradiction that A was finite. As A is non-empty (it
contains 0), it must therefore have a largest element n (as can be seen by a
routine induction on the cardinality of A). But then by hypothesis, n + 1
would also have to lie in A, and n would thus need to be at least as large as
n+ 1, a contradiction. �

But if one allows for vagueness in how one specifies the set A, then
Proposition 1.11.1 can seem to be false, as observed by the ancient Greeks
with the sorites paradox . To use their original example, consider the ques-
tion of how many grains of sand are required to make a heap of sand. One
or zero grains of sand are certainly not sufficient, but clearly if one places
enough grains of sand together, one would make a heap. If one then “de-
fines” A to be the set of all natural numbers n such that n grains of sand are
not sufficient to make a heap, then it is intuitively plausible that A obeys
both Hypothesis 1 and Hypothesis 2 of the above proposition, since it is
intuitively clear that adding a single grain of sand to a non-heap cannot
convert it to a heap. On the other hand, it is just as clear that the set A is
finite, thus providing a counterexample to Proposition 1.11.1.

The problem here is the vagueness inherent in the notion of a “heap”.
Given a pile of sand P , the question “Is P a heap?” does not have an
absolute truth value; what may seem like a heap to one observer may not
be so to another. Furthermore, what may seem like a heap to one observer
when presented in one context, may not look like a heap to the same observer
when presented in another context; for instance, a large pile of sand that
was slowly accumulated over time may not seem14 as large as a pile of sand
that suddenly appeared in front of the observer, even if both piles of sand
were of identical size in absolute terms.

There are many modern variants of the sorites paradox that exploit
vagueness of definition to obtain conclusions that apparently contradict rig-
orous statements such as Proposition 1.11.1. One of them is the interesting

14The well-known (though technically inaccurate) boiling frog metaphor is a particularly
graphic way of depicting this phenomenon, which ultimately arises from the fact that people

usually do not judge quantities in absolute terms, but instead by using relative measurements
that compare that quantity to nearby reference quantities.
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number paradox . Let A be the set of all natural numbers that are “interest-
ing”, in the sense that they have some unusual defining feature (for instance,
561 is the first composite Carmichael number15 and is thus presumably an
interesting number). Then A is presumably finite, but the first natural num-
ber that does not lie in A is presumably also an interesting number, thus
contradicting the definition of A. Here, the variant of Proposition 1.11.1
that is apparently being contradicted here is the well-ordering principle.

Of course, just as the sorites paradox can be diagnosed as arising from
the vagueness of the term “heap”, the interesting number paradox can be
diagnosed as arising from the vagueness of the term “interesting”. But one
can create a functionally similar paradox that, at first glance, eliminates this
vagueness, namely the Berry paradox. Let A denote the set of all natural
numbers that can be defined in fewer than sixteen words in the English
language; thus, again 561 can be defined as “The first composite Carmichael
number” and thus belongs in A. As there are only finitely many sentences
that one can form with fewer than sixteen words of the English language, A
is clearly finite. But the first natural number that does not lie in A can be
described as “The first natural number not definable in fewer than sixteen
words in the English language”, which is a definition in fewer than sixteen
words in the English language, and thus lies in A, again providing another
seeming contradiction to the well-ordering principle.

Here, the vagueness is a bit harder to spot, and it comes from the use of
“the English language”, which is a vague and mutable concept that allows
for self-reference and is in fact technically inconsistent if one tries to interpret
it naively (as can be seen from any number of linguistic paradoxes, starting
with the classic liar paradox ). To make things more precise, one can try to
replace the English language here by a formal mathematical language, e.g.
the language of true arithmetic N. Let us take one such formal language and
call it L. Then one can certainly define the set AL of all natural numbers
that can be definable in fewer than sixteen words in the language L, and one
can form the natural number nL, defined as “The first natural number not
definable in fewer than sixteen words in the language L”. This is a natural
number that is definable in fewer than sixteen words - but not in the language
L, but rather in a meta-language L′ that, among other things, is able to
interpret what it means for a sentence in L to define a natural number.
This requires a truth predicate for L, and Tarski’s indefinability theorem (cf.
Theorem 1.10.12) asserts that such a predicate cannot exist inside L itself.
Indeed, one can interpret Berry’s paradox as providing a proof of Tarski’s
theorem. Thus we see that a non-trivial mathematical theorem (in this case,

15A Carmichael number is a natural number n such that an−1 = 1 mod n for all a coprime
to n; all prime numbers are Carmichael numbers by Fermat’s little theorem, but not conversely.
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Tarski’s theorem) emerges when one finally clears away all the vagueness
from a sorites-type paradox. Similarly, if instead one replaced the word
“definable” by “provably definable”, and used a formal axiom system L as
one’s language, one could similarly deduce Gödel’s incompleteness theorem
(cf. Corollary 1.10.15) from this argument.

Similar paradoxes come up when trying to enumerate the real numbers,
or subsets of real numbers. Here, the analogue of Proposition 1.11.1 is

Proposition 1.11.2. Let A be a set of real numbers with the following
properties:

(1) A is infinite.

(2) Given any sequence x1, x2, x3, . . . of elements of A, one can find
another element y of A that is not equal to any of the elements of
the sequence (i.e. y 6= xn for every positive integer n).

Then A is uncountable16.

Again, in the rigorous world in which all terms are clearly defined, this
proposition is easily proven:

Proof. Suppose for sake of contradiction that A was countable. Then, being
infinite, it could be enumerated by a sequence x1, x2, x3, . . . of real numbers
in A; but then by Hypothesis 2, there would then be another real number
y that was also in A, but distinct from all of the elements of the sequence,
contradicting the fact that this was an enumeration. �

Since Cantor’s diagonal argument demonstrates that the set of reals R
itself obeys Hypothesis 2 (and also clearly obeys Hypothesis 1), we conclude
as a corollary that the reals are uncountable.

However, one can find apparent counterexamples to Proposition 1.11.2
if one deploys enough vagueness. For instance, in the spirit of the Berry
paradox, one could try setting A to be the set of all “definable” real numbers
- those numbers that can be defined using a finite sentence in the English
language. As there are only countably many such sentences, A would be
countable; it is also clearly infinite. But, on the other hand, one could take
any sequence of real numbers x1, x2, x3, . . . in A and apply the diagonal
argument to define another real number that does not lie in that sequence.

Again, this apparent contradiction (known as Richard’s paradox ) be-
comes clarified if one removes the vagueness, by replacing “the English lan-
guage” with a formal language L. For instance, one could take L to be true
arithmetic, and AL to be the set of all real numbers that are definable by

16Here uncountability has the usual set-theoretic definition, namely that the infinite set A is
not in one-to-one correspondence with the natural numbers.
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a sentence in L. Then AL is indeed countable, but any enumeration of AL
requires the truth predicate for L and thus such an enumeration (as well
as the Cantor diagonalisation thereof) cannot be defined in L, but only in
a meta-language L′ - thus obtaining yet another proof of Tarski’s indefin-
ability theorem. Or, one could take L to be a programming language, such
as the language of Turing machines; then again the set AL of real numbers
whose decimal expansion can be given as the output of an algorithm in L is
countable, but to enumerate it one would have to solve the halting problem
for L, which requires a meta-language L′ that is distinct from L itself; thus
in this case the diagonalisation argument gives a proof of Turing’s halting
theorem.

It is also instructive to contrast the formal distinction between countable
and uncountable sets with the sorites paradox distinction between a non-
heap and a heap of sand. Intuitively, the act of adding one grain of sand
to a non-heap cannot directly turn that non-heap into a heap, and yet
Proposition 1.11.1 forces this to eventually be the case. Similarly, it is
intuitively clear that act of producing a single real number not on one’s
countable enumeration of a set A does not directly convert a countable set
to become uncountable, and yet Proposition 1.11.2 forces this to eventually
be the case. More formally, Proposition 1.11.1 is powered by the principle of
mathematical induction, which allows one to iterate the n→ n+1 operation
indefinitely (or more precisely, up to the first infinite ordinal ω) to explicitly
achieve infinite cardinality; in a similar spirit, one can interpret Proposition
1.11.2 as being powered by transfinite induction, in the sense that one can
iterate the diagonalisation operation indefinitely (or more precisely, up to the
first uncountable ordinal ω1) to explicitly achieve uncountable cardinality.
The transition from countability to uncountability does not occur during the
successor ordinal steps of this transfinite induction, but during the (final)
limit ordinal step.

One can perform a similar analysis for the other results discussed in
Section 1.10 (or [Ta2010b, §1.15]). For instance, Russell’s paradox tells us,
among other things, that (assuming the standard Zermelo-Frankel axioms
of set theory) the class of all sets cannot itself be a set. Actually we have the
following slightly more general statement, analogous to Proposition 1.11.1
or Proposition 1.11.2:

Proposition 1.11.3. Let C be a class of sets with the following properties:

(1) The empty set ∅ belongs to C.

(2) If a set A belongs to C, then the singleton set {A} also belongs to
C.
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(3) If any collection {Aβ : β ∈ B} of sets Aβ, indexed by another set
B, is such that each Aβ lies in C, then their union

⋃
β∈B Aβ also

lies in C.

Then C is not a set.

Remark 1.11.4. Hypothesis 1 is actually redundant, being implied by the
trivial case of Hypothesis 3 when B is empty, but we keep it in order to
emphasise the similarity with Propositions 1.11.1 and 1.11.2.) The Zermelo-
Frankel axioms (as well as one’s intuition from naive set theory) tell us that
the class of all sets obeys Hypotheses 1, 2, 3, and so cannot17 be a set. A
key subtlety is that the set {Aβ : β ∈ B} itself is not required to lie in C. If
one imposes such a restriction, then C can become a set (and by adding a
few additional axioms, such sets become the same concept as Grothendieck
universes).

Proof. Suppose for contradiction that C is a set. Using the axiom (schema)
of specification, the set B := {A ∈ C : A 6∈ A} is then a set. It is the union
of all the singleton sets {A} with A ∈ B, so by Hypotheses 2 and 3, B ∈ C.
But then we see that B ∈ B if and only if B 6∈ B, which is absurd. �

Again, the hypotheses in this proposition seem innocuous, much like
adding a single grain of sand to a non-heap of sand; but if one iterates
them indefinitely then one eventually ends up with a class so large that
it is no longer a set. Here, the transfinite induction is not up to the first
infinite ordinal or the first uncountable ordinal, but rather across the class
of all ordinals; the point then being that the class of all ordinals is itself
not a set, a fact also known as the Burali-Forti paradox. Naive set theory
intuition seems to be in contradiction to Proposition 1.11.3, but this is only
due to the vagueness inherent in that concept of set theory. One can also
try analysing Berry-type paradoxes in this setting, for instance working
only with “constructible” sets (i.e. elements of Gödel’s universe L); the
consequence one gets from this is that the class of constructible sets is not
itself constructible (in fact, it is not even a set, as it contains all the ordinals).

Proposition 1.11.3 may seem only of interest to set theorists and logi-
cians, but if one makes a tiny modification of it, by replacing a class of sets
with a partially ordered class, then one gets a very useful result:

Lemma 1.11.5 (Zorn’s lemma). Let C be a partially ordered class which
obeys the following properties:

(1) At least one element belongs to C.

17In fact, the above proposition is essentially equivalent to the slightly stronger assertion
that the class of all well-founded sets, also known as the von Neumann universe V , is not a set.
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(2) If x is an element of C, then there is another element y of C such
that y > x.

(3) If (xβ)β∈B is a totally ordered set in C, indexed by another set B,
then there exists an element y ∈ C such that y ≥ xβ for all β ∈ B.

Then C is not a set.

This lemma (which, of course, requires the axiom of choice to prove, and
is in fact equivalent to this axiom) is usually phrased in the contrapositive
form: any non-empty set C for which every totally ordered set has an upper
bound, has a maximal element. However when phrased in the above form,
we see the close similarity between Zorn’s lemma and Propositions 1.11.1-
1.11.3. In this form, it can be used to demonstrate that many standard
classes (e.g. the class of vector spaces, the class of groups, the class of
ordinals, etc.) are not sets, despite the fact that each of the hypotheses in
the lemma do not directly seem to take one from being a set to not being a
set. This is only an apparent contradiction if one’s notion of sets is vague
enough to accommodate sorites-type paradoxes.

More generally, many of the objects demonstrated to be impossible in
the previous posts in this series can appear possible as long as there is enough
vagueness. For instance, one can certainly imagine an omnipotent being pro-
vided that there is enough vagueness in the concept of what “omnipotence”
means; but if one tries to nail this concept down precisely, one gets hit by
the omnipotence paradox. Similarly, one can imagine a foolproof strategy
for beating the stock market (or some other zero sum game), as long as
the strategy is vague enough that one cannot analyse what happens when
that strategy ends up being used against itself. Or, one can imagine the
possibility of time travel as long as it is left vague what would happen if one
tried to trigger the grandfather paradox. And so forth. The “self-defeating”
aspect of these impossibility results relies heavily on precision and definite-
ness, which is why they can seem so strange from the perspective of vague
intuition.

1.12. A computational perspective on set theory

The standard modern foundation of mathematics is constructed using set
theory. With these foundations, the mathematical universe of objects one
studies contains not only18 the “primitive” mathematical objects such as
numbers and points, but also sets of these objects, sets of sets of objects,
and so forth. One has to carefully impose a suitable collection of axioms

18In a pure set theory, the primitive objects would themselves be sets as well; this is useful

for studying the foundations of mathematics, but for most mathematical purposes it is more
convenient, and less conceptually confusing, to refrain from modeling primitive objects as sets.
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on these sets, in order to avoid paradoxes such as Russell’s paradox ; but
with a standard axiom system such as Zermelo-Fraenkel-Choice (ZFC), all
actual paradoxes that we know of are eliminated. Still, one might be some-
what unnerved by the presence in set theory of statements which, while not
genuinely paradoxical in a strict sense, are still highly unintuitive; Cantor’s
theorem on the uncountability of the reals, and the Banach-Tarski paradox,
are perhaps the two most familiar examples of this. (Cantor’s theorem is dis-
cussed below in Sections 1.10, 1.11; the Banach-Tarski paradox is discussed
in [Ta2010, §2.2].)

One may suspect that the reason for this unintuitive behaviour is the
presence of infinite sets in one’s mathematical universe. After all, if one deals
solely with finite sets, then there is no need to distinguish between countable
and uncountable infinities, and Banach-Tarski type paradoxes cannot occur.

On the other hand, many statements in infinitary mathematics can be
reformulated into equivalent statements in finitary mathematics (involving
only finitely many points or numbers, etc.); see for instance [Ta2008, §1.3,
§1.5], [Ta2010b, §2.11]. So, one may ask: what is the finitary analogue of
statements such as Cantor’s theorem or the Banach-Tarski paradox?

The finitary analogue of Cantor’s theorem is well-known: it is the asser-
tion that 2n > n for every natural number n, or equivalently that the power
set of a finite set A of n elements cannot be enumerated by A itself. Though
this is not quite the end of the story; after all, one also has n + 1 > n for
every natural number n, or equivalently that the union A ∪ {a} of a finite
set A and an additional element a cannot be enumerated by A itself, but
the former statement extends to the infinite case, while the latter one does
not. What causes these two outcomes to be distinct?

On the other hand, it is less obvious what the finitary version of the
Banach-Tarski paradox is. Note that this paradox is available only in three
and higher dimensions, but not in one or two dimensions; so presumably
a finitary analogue of this paradox should also make the same distinction
between low and high dimensions.

I therefore set myself the exercise of trying to phrase Cantor’s theorem
and the Banach-Tarski paradox in a more “finitary” language. It seems
that the easiest way to accomplish this is to avoid the use of set theory,
and replace sets by some other concept. Taking inspiration from theoretical
computer science, I decided to replace concepts such as functions and sets by
the concepts of algorithms and oracles instead, with various constructions
in set theory being replaced instead by computer language pseudocode. The
point of doing this is that one can now add a new parameter to the uni-
verse, namely the amount of computational resources one is willing to allow
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one’s algorithms to use. At one extreme, one can enforce a “strict fini-
tist” viewpoint where the total computational resources available (time and
memory) are bounded by some numerical constant, such as 10100; roughly
speaking, this causes any mathematical construction to break down once
its complexity exceeds this number. Or one can take the slightly more per-
missive “finitist” or “constructivist” viewpoint, where any finite amount of
computational resource is permitted; or one can then move up to allowing
any construction indexed by a countable ordinal, or the storage of any array
of countable size. Finally one can allow constructions indexed by arbitrary
ordinals (i.e. transfinite induction) and arrays of arbitrary infinite size, at
which point the theory becomes more or less indistinguishable from standard
set theory.

I describe this viewpoint, and how statements such as Cantor’s theorem
and Banach-Tarski are interpreted with this viewpoint, in the rest of this
section. I should caution that this is a conceptual exercise rather than a
rigorous one; I have not attempted to formalise these notions to the same
extent that set theory is formalised. Thus, for instance, I have no explicit
system of axioms that algorithms and oracles are supposed to obey. Of
course, these formal issues have been explored in great depth by logicians
over the past century or so, but I do not wish to focus on these topics in
this post.

A second caveat is that the actual semantic content of this post is going
to be extremely low. I am not going to provide any genuinely new proof of
Cantor’s theorem, or give a new construction of Banach-Tarski type; instead,
I will be reformulating the standard proofs and constructions in a different
language. Nevertheless I believe this viewpoint is somewhat clarifying as to
the nature of these paradoxes, and as to how they are not as fundamentally
tied to the nature of sets or the nature of infinity as one might first expect.

1.12.1. A computational perspective on mathematics. The great ad-
vantage of using set theory in mathematics is that all objects in a given set
(e.g. all numbers in the real line R) are available to you at all times; one can
take one, many, or all objects in a set and manipulate them as one wishes
(cf. the axiom schema of replacement); similarly, one can assign a truth
value to a statement that quantifies over an arbitrary number of objects. If
one removes sets from the picture, then one no longer has immediate access
to arbitrary elements of a set, and one can no longer perform operations
en masse on all the elements of a set at once; instead, one must use some
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(possibly more restrictive) protocol19 for manipulating objects in a class, or
verifying whether a given statement is true or false.

For this, it is convenient to use the conceptual framework that is familiar
to us through modern computer languages, such as C. In this paradigm,
when dealing with a class of objects (e.g. integers), we do not get access to
the entire set Z of integers directly. Instead, we have to declare a integer
variable, such as n, and set it equal to some value, e.g. n := 57; or, if one
is creating a routine that takes input, n might be initialised to one of the
unspecified inputs of that routine. Later on, we can use existing variables
to define new ones, or to redefine existing ones, e.g. one might define m
to equal n ∗ n, or perhaps one can increment n to n + 1. One can then
set up various loops and iterations to explore more of the parameter space;
for instance, if countably infinite loops are permitted as a computational
resource, then one can exhaust the positive integers by starting at n = 1
and incrementing n by 1 indefinitely; one can similarly exhaust the negative
integers, and by alternating between the two (and also passing through 0)
one can exhaust the entire integers by a countably infinite loop. This of
course is just the standard demonstration that the integers are countable.

Real-world computers, of course, have finite limits of precision; they
cannot represent arbitrarily large integers, but only integers up to a certain
size (e.g. 216 − 1 or 232 − 1). One could think about computational models
with such a strict finitary limitation, but let us assume that we are in a more
idealised setting in which there are no limitations on how large an integer
one can store. Let us then make the even more idealised assumption that we
can also store real numbers with unlimited precision; our computer never20

makes any roundoff errors.

Remark 1.12.1. A technical point: it may be that the computational model
of the real numbers is different from the standard real line R; for instance,
perhaps the computer only implements “constructible” real numbers, which
is for instance the case in physical arbitrary precision computers. We will
touch upon this point again later.

Note that if one were to expand out a given real number, say π, as a
decimal expansion, then one would obtain an infinite string of digits. But,
just as we do not have direct access to the set Z of all integers, we will not
have direct access to the entire decimal expansion of π. If we have a natural

19In more philosophical terms, we are focusing more on an epistemological approach to

mathematics, based on what we can measure and query, as opposed to an ontological approach,

based on what we believe to exist.
20Note that there are indeed arbitrary precision models of computation that can do this,

though the catch is that speed of computation depends heavily on how complicated it is to
describe any given number.
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number n, we are allowed to inspect the nth digit of π by making a suitable
function call (e.g. digit(π, n)), and if we are allowed to set up an infinite
loop in which n starts at 1 and increments indefinitely, one can exhaust all
the digits of π, which is good enough for most “practical” mathematical
purposes. For instance, if one were allowed to run programs of countable
length using real arithmetic, one could make a program that determined
whether the digits of π were uniformly distributed or not, or to determine
the truth of the Riemann hypothesis, or more generally to compute the
truth-value of any first-order sentence in the theory of the real line.

We assume that the usual arithmetic operations can be performed on
real numbers in reasonable amounts of time. For instance, given two real
numbers x, y, one can determine whether they are equal or not in finite
time (consulting some sort of “equality oracle” for the reals if necessary).
Note that equality can be a subtle issue; if one thinks of real numbers as
infinite strings of digits, their equality can only be verified directly by using
a countable amount of computing power. But we will sidestep the issue
of how exactly the reals are implemented by simply assuming that enough
oracles exist to perform real arithmetic at an acceptable computational cost.

As already hinted at in the above discussion, we are assuming that our
computer has access to a certain amount of computing resources (e.g. time,
memory, random number generation, oracles). We will be rather vague on
exactly how to formalise the concept of a resource, but basically the standard
definitions used in computer science would be a good approximation here,
at least when the resources are finite. But one can consider allowing for
certain computational resources to be infinite in some carefully controlled
manner; for instance, one could consider a situation in which countably
infinite loops are permitted (provided that all variables in the loop that
one wants to retain “converge” in some sense at the end of the loop), but
for which uncountable loops are not allowed. We will not formalise such
concepts here (but roughly speaking, they correspond to allowing transfinite
induction up to some specified ordinal, and no further).

We will not be using sets or set-theoretic functions in this computer
language. However, we will use as a substitute the concept of an oracle -
a “black box” routine f() that takes zero or more variables of a given class
as input, and returns zero or more variables in various classes as output
(usually we will have just a single output, but it will be convenient to allow
multiple outputs). Being a black box, we do not know how the oracle obtains
the output from the input, but we are able to use the oracle anyway. Let
us assume that each invocation of an oracle takes some acceptable amount
of time (e.g. bounded time when the computational resources are finite, or
countably infinite time if countable time resources are allowed, etc.). All
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our oracles are consistent in the sense that they always produce the same
output for a fixed choice of input; thus, if one calls the oracle again at
some later time with the same input, then the oracle will return the same
output as it did before. It is important to note that consistency is a subtly
weaker assumption than requiring the oracle is non-adaptive; we allow the
oracle to “remember” previous queries, and to use that memory to formulate
answers to later queries, as long as it does not contradict the outputs it gave
previously.

We will be concerned primarily with membership oracles - an oracle E()
that takes a variable x in a given class and returns an answer E(x) that is
either “Yes” or “No”. Informally, the oracle E is describing some subset of
this class, and is answering questions regarding whether any given variable x
lies in this set or not. Note, however, that this set only exists in a “virtual”
or “potential” sense; if the oracle is adaptive, the set of inputs that will give
a “Yes” answer may not yet be fixed, but could depend on future queries to
the oracle. If the class can be exhausted within the computational resources
permitted (e.g. if the parameter space can be countably enumerated by the
computer, and countably infinite loops are permitted), then one can query
the oracle for every single element and thus pin down the set completely
(though one may not be able to store this set if one does not have sufficient
memory resources!), but if the parameter space is too large to be exhausted
with the available resources, then the set that the oracle is describing will
never be completely described.

To illustrate this, let us briefly return to the traditional language of set
theory and recall the following textbook example of a non-measurable subset
E of the reals R, which can be found for instance in [Ta2011, Proposition
1.2.18]. This set is constructed by partitioning R into cosets x + Q of the
rationals Q, and then using the axiom of choice to selecting a single repre-
sentative of each coset; the set E is the collection of all such representatives.
Thus the rational translates E + q, q ∈ Q partition R, and it is not hard to
then deduce (using the properties of Lebesgue measure) that E cannot be
Lebesgue measurable.

We can simulate this non-measurable set by an adaptive oracle E(),
which remembers all prior queries to itself, and works as follows:

• E() takes a real number x as input.

• If E() has previously answered the question E(x) of whether x lies
in E, repeat whatever answer was given previously.

• If x has not been queried before, and if furthermore no rational
translate x + q of x has been queried before either (i.e. x differs
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from all previous queries by an irrational number), then answer
E(x) with “yes”.

• Finally, if x has not been queried before, but x+q has been queried
before for some rational q, then answer E(x) with “no”.

• Store x (and E(x)) in memory for use in future queries.

Assuming one has a rationality oracle Q() that can tell (in bounded
time) whether a given real number x is rational or not, then E is a perfectly
programmable oracle, which will run in finite time whenever one asks only
a finite number21 of queries of it. It is even completely deterministic - it re-
quries no arbitrary choices on the part of the oracle. If one had the patience
to query this oracle for every single real number x (which would, of course,
require an uncountable number of queries), the oracle would eventually de-
scribe completely the non-measurable set E. But if one is only permitted
a finite or countable number of queries, then the non-measurable set only
exists in a “virtual” sense.

More generally, non-adaptive oracles tend (as a rule of thumb) to gen-
erate measurable sets, while adaptive oracles are likely to generate non-
measurable sets. So we see that non-measurability does not have to be
viewed as a quirk arising from the nature of infinity, or from the axiom of
choice; it can be viewed instead as the freedom to adapt to previous queries
to membership of the set, which is a concept that makes sense even in a
strictly finitist setting.

Remark 1.12.2. One can think of an non-adaptive oracle as being like a
truthful observer, reporting on some objective set that exists independently
of the queries, while an adaptive oracle is more like a pathological liar,
inventing a previously non-existent set on the fly as needed in order to
consistently answer the questions posed of it. It is then not so surprising
that the set thus invented is likely to be non-measurable. We thus see that
the ability of oracles to adapt is somewhat analogous to the role22 the axiom
of choice plays in traditional set theory.

We will discuss measurability and non-measurability in more detail a
little later in this post.

We have seen that membership oracles are sort of like “virtual” sets.
Many set operations can be simulated for membership oracles. For instance,
given two membership oracles E(), F () that apply to variables x in some

21After querying the oracle an infinite number of times, though, it will require an infinite

search loop in order to make sure that any subsequent answer it gives is consistent with all previous

answers, unless one is allowed to use an infinite amount of memory, e.g. an array indexed by the
quotient space R/Q.

22As pointed out to me by Chad Groft, adaptive oracles can also be used to interpret the
method of forcing in model theory.
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class (e.g. the real numbers), one can form the union oracle (E ∪ F )(),
which works by querying both E(x) and F (x) and returning “Yes” if at
least one of E(x) and F (x) was “Yes”, and “No” otherwise. More generally,
any finite boolean operation of membership oracles gives another member-
ship oracle, and (if countable computational resources are available) the
same is true for countable boolean operations also. As one increases the
amount of computational resources available, more and more set-theoretic
operations become available, and when one allows unlimited resources (or
more precisely, transfinite induction up to any ordinal, and storage of ar-
bitrarily sized infinite sets), then all the standard operations in set theory
(e.g. invocations of the axiom schema of replacement, the power set axiom,
the axiom of choice, etc.) become available.

Remark 1.12.3. Membership oracles E() only describe a raw, unstructured
set. If one wants to place additional structure on a set (e.g. measure struc-
ture, topological structure, smooth structure, etc.) then additional oracles
would be needed. Of course, the same is true in traditional set theory; for
instance, to place a topology on a set E one also needs to specify a collection
F of open sets on E obeying the axioms of a topology, and similarly for other
structures one can place on sets. We will see an example of these additional
oracles later in this section, when we revisit the concept of measurability.

Remark 1.12.4. Membership oracles are weaker than sets in many ways.
One of these comes from a breakdown of the law of the excluded middle. In
set theory, a statement about a set E is either true or false; for instance, E
is either finite or infinite. If one is instead given an adaptive membership
oracle E(), questions such as whether E() describes a finite set or not are
undecidable if one only has finite computational resources. However, one
can imagine strengthening the membership oracle E() to a oracle that, in
addition to answering questions about membership of individual elements,
will also answer more general questions about E (such as whether E is
finite), in such a fashion that all the answers given are consistent with each
other. In such a way, the law of the excluded middle can be restored; but
then programming an adaptive oracle in a way that keeps all the answers
consistent becomes quite a challenge23.

1.12.2. Cantor’s theorem. Cantor’s theorem (and its proof) transfers
easily enough from sets to oracles. The analogue of a (proposed) enumera-
tion of the real numbers is an “enumeration oracle” f() that takes a natural
number n as input, and returns a real number f(n) as output; we allow
repetitions. The Cantor diagonal argument shows that given any such pu-
tative enumeration f , and given access to a countable amount of computing

23Note though that the Gödel completeness theorem asserts, in some sense, that this is always
possible, provided that one’s initial constraints on E are originally consistent.
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resources, one can construct a real number x which is guaranteed not to be
covered by the enumeration oracle; for instance, one can construct x to be a
string of decimals 0.x1x2 . . . =

∑∞
j=1

xj
10j

, with x1 chosen to be the first digit

in24 {1, . . . , 8} not equal to the first digit of f(1), x2 chosen to be the first
digit of {1, . . . , 8} not equal to the second digit of f(2), and so forth.

This is of course virtually identical to the usual proof of Cantor’s the-
orem. But the proof highlights that in order to exhibit a counterexample
to the claim that f enumerates the reals, one needs a countably infinite
amount of computational resources. And indeed if one works in a finitary
computational model in which one is only allowed to run programs that
are guaranteed to halt, and if one limits one’s real number system to the
“finitely constructible” reals - those reals that can be generated by halting
programs - then one can indeed enumerate the “real numbers” in this sys-
tem, by enumerating all the possible programs to generate real numbers as
P1, P2, . . ., and computing f(n) to be the output of Pm, where 1 ≤ m ≤ n is
the first integer such that Pm halts in less than n steps, while outputting a
number different from f(1), . . . , f(n−1) (setting f(n) = 0 if no such integer
exists). In this model, the real number x given by Cantor’s argument is not
finitely constructible, but only countably constructible. It is only because
one has access to countably infinite computational resources (in particular,
the ability to sum convergent infinite series such as

∑∞
j=1

xj
10j

), that the reals
are no longer countable.

Let us now consider a slightly different version of Cantor’s theorem,
which in the language of set theory asserts that for a given set A (e.g. the
natural numbers N), that one cannot enumerate the power set 2A by A
itself. In order to phrase this using the language of oracles rather than sets,
one needs to be able to treat oracles themselves as variables; note that many
modern computer languages (particularly functional languages such as Lisp
or Haskell) already do this. In particular, we allow for the existence of
oracles that generate further oracles as output, or themselves take oracles
as input.

A proposed enumeration of the power set of the natural numbers (say) by
the natural numbers themselves can then be viewed as an enumeration oracle
f() which takes a natural number n as input, and returns a membership
oracle f(n)() in the natural numbers as output; thus f(n) itself is able to
accept a natural number m as input and return a yes-or-no answer f(n)(m)
as output.

Cantor’s diagonal argument then asserts that given any proposed enu-
meration oracle f() of the above form, one can always find a membership

24Here, we have excluded the digits 0 and 9 to avoid the technical and irrelevant 0.999 . . . =
1.000 . . . issue.
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oracle E() which is not enumerated by f . Indeed, one simply sets E(n) to
be the negation of f(n)(n) for any given natural number input n.

With this version of Cantor’s argument, we no longer need a countably
infinite amount of computational resources; the above argument is valid
even in the finitary computational model. In that model, the argument
shows that the class of oracles that terminate in finite time cannot itself be
enumerated by an oracle that terminates in finite time; this is essentially
Turing’s halting theorem. Thus we see that Turing’s theorem and Cantor’s
theorem are simply different cases25 of a single general theorem, the former
in the case of finitary computational resources and the latter in the case of
unlimited computational resources.

Also observe that this version of Cantor’s argument works if the natural
numbers are replaced by any other class of variable; for instance, in the
finite class of integers between 1 and n, the argument demonstrates that
the membership oracles in this class cannot be enumerated by the numbers
from 1 to n itself, thus 2n > n.

Let us now discuss the analogous situation with the inequality n+1 > n.
The claim is now that if A is a finite class, and A′ is a strictly larger class
(containing at least one additional element a outside of A), and one is given
an enumeration oracle f() that takes an variable x in A as input and returns
a variable f(x) in A′ as output, then one should be able to find a variable y
in A′ or equal to a which is not covered by the enumeration oracle.

One way to find such a y is by the following algorithm, which is just
a painfully disguised version of the proof that n + 1 > n using induction.
Let a be an element in A′ that is not in A. We first search through all the
elements x of A to see if there is a solution to the equation f(x) = a. If no
solution exists, then we are done; we can just take y = a. So suppose instead
that we have some found some x0 for which f(x0) = a. Then we can delete
x0, and all other solutions to f(x) = a, from the domain A of the oracle f ,
and also delete a from the output A′ of the oracle, giving rise to a modified
oracle f ′ which takes as input a variable x with f(x) 6= a, and returns the
output f ′(x) := f(x). Note that if we ever find a variable y in the range of
f ′ that is not enumerated by f ′, then y will not be enumerated by f either.
So we can descend from f to the oracle f ′, which has a smaller domain and
range. Also note that the range remains strictly larger than the domain,
as x0 lies in the range but not in the domain. We can thus keep iterating
this procedure; since we cannot have an infinite descent, the algorithm must
eventually terminate. Unpacking the termination condition, we have indeed
produced an element y in the range of f which was not enumerated by f .

25See also [Ta2010b, §1.15] and Sections 1.10, 1.11 for further discussion of these “no self-
defeating object” arguments.
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We observe that this algorithm only halts due to the principle of infinite
descent, which is only valid when the initial class one starts with was finite.
For infinite classes, which admit infinite descents, one can of course find
surjective enumerations between such classes and strictly larger classes; for
instance, the enumeration oracle that sends a natural number n to n − 1
is an enumeration of N ∪ {−1} by N. In contrast, the proof of Cantor’s
theorem does not rely on facts specific to finite classes, such as the principle
of infinite descent, and is thus valid in arbitrary classes.

1.12.3. Measurability revisited. In Section 1.12.1, we gave an example
of a membership oracle E in the real line which was non-measurable, in the
sense that the set that it was (virtually) describing necessarily failed to be
Lebesgue measurable. But the concept of Lebesgue measurability was still
defined in the context of set theory, and not in a purely oracle-theoretic
language. It is then natural to ask whether one can define Lebesgue mea-
surability purely in the context of computational models, and in particular
whether one can discuss this concept in a finitary computational model.

For simplicity let us now work in a bounded subset of R, such as the
unit interval [0, 1], so that we can work with a finite measure rather than a
σ-finite measure.

From classical measure theory, we recall the following characterisation
of Lebesgue measurability: a subset E of the unit interval is Lebesgue mea-
surable if for every ε > 0, one can find an elementary subset Eε of the unit
interval (i.e. a finite union of open intervals) whose set-theoretic difference
E∆Eε with E has outer measure less than ε, or equivalently that it can be
covered by a countable collection of intervals Iε,1, Iε,2, . . . whose length adds
up to less than ε.

Thus, if one wants a membership oracle E() to “certify” its measura-
bility, one way to do so is to provide an additional “measurability oracle”
M(), which takes a positive real number ε > 0 as input, and returns three
outputs:

• A description of an elementary set Eε (which can be done in a finite
amount of time and space, by specifying the number of intervals
used to form Eε, together with their endpoints);

• An interval oracle I(), that for each natural number input n returns
an interval Iε,n;

• A covering26 oracle N(), which for each real number x in E∆Eε,
returns a natural number n for which x ∈ Iε,n.

26Actually, this oracle is redundant, as it can be simulated from the previous two outputs by
a finite brute force search; but we include it for conceptual clarity.
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With these oracles, one can then verify the measurability of E by select-
ing an ε > 0, and verifying firstly that after selecting any natural number
N , the sum of the lengths of Iε,1, . . . , 1ε,N remains less than ε, and secondly
that after selecting any real number x, that if x lies in E but not in Eε or
vice versa, that x indeed lies in Iε,N(x). In principle, if one performed this
verification procedure an uncountable number of times (once for each choice
of ε,N, x) one would fully demonstrate the measurability of E; but if one
instead only had access to finite or countable computational resources, then
one could only verify measurability on an “as needed” basis.

So, in the oracle model, a measurable set is not simply a membership
oracle E(); it must also be supplemented with an additional measurability
oracle M() that “witnesses” the measurability. This is analogous to how sets
must be augmented with (say) topological structure if one wants to perform
topology on that set, or algebraic structure if one wants to perform algebra
on that set, etc.

If one possesses a measurability oracle M() for a set E (or more precisely,
a membership oracle E()), then can estimate the Lebesgue measure of E to
within accuracy ε by calling M(ε) to obtain an approximant Eε, and then
computing the measure |Eε| of Eε (which can be done in a finite amount
of time, as Eε is simply a finite union of intervals). A key fact (which, not
coincidentally, is crucial in the standard construction of Lebesgue measure)
is that these approximations to the Lebesgue measure of E are compatible
with each other in the following sense: if one calls one measurability oracle
M(ε) for E() at accuracy ε > 0 to get one estimate |Eε| for the Lebesgue
measure of E(), and if one then calls another (possibly different) measura-
bility oracle M ′(ε′) for the same set E() at another accuracy ε′ > 0 to get
another estimate |E′ε′ | for E(), then these two estimates can only differ by
at most ε+ ε′; in particular, sending ε→ 0, one obtains a Cauchy sequence
and (after a countable number of operations) one can then compute the
Lebesgue measure of E to infinite precision.

This key fact boils down (after some standard manipulations) to the
fact that an interval such as [a, b] has outer measure at least b − a; in our
oracle based model, this means that if one is given an interval oracle I()
that generates open intervals I(n) for each natural number n, in such a way
that the total length

∑
n |I(n)| of these intervals is less than b− a, then one

can find a point in [a, b] which is not covered by any of the I(n).

This can be done using a countable amount of computational power
(basically, the ability to run a single infinite loop; this is roughly equivalent
to the theory RCA0 tht is used in in reverse mathematics). The point is that

for each finite N , the set SN := [a, b]\
⋃N
n=1 I(n) is a computable non-empty

finite union of closed intervals in [a, b], which decreases in N . The infimum
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inf(SN ) can be computed infinite time for each N , and increases in N ; the
limit limN→∞ inf(SN ) is then an element in

⋂
N SN that lies in [a, b] but is

outside all of the I(n). Thus, given a countable amount of computational
power, one can consistently define Lebesgue measure of a measurable set,
and verify its basic properties.

It is instructive to apply the above discussion to the non-measurable
membership oracle E() given in previous sections (trivially modified to lie
in [0, 1] rather than in R). If one is given a purported measurability oracle
M() for this oracle E(), one can eventually show that this oracle M() does
not actually certify the measurability of E() as claimed, but this requires
a countably infinite amount of computation to establish. (Basically, there
are two cases, based on whether M() asserts that E() has positive Lebesgue
measure or not (which can be decided after a countable amount of compu-
tation). If it has positive measure, then by invoking M(ε) with ε less than
half this measure, one can soon find an interval I in which E() has density
greater than 1/2 (or more precisely, the complement of E in I has outer
measure strictly less than |I|/2) and then one can run a variant of the above
Bolzano-Weierstrass argument to find two points x, y in E() and in I which
differ by a rational, contradicting the construction of E. If instead M()
asserts that E() has zero measure, then M() can cover E() by intervals of
arbitrarily small total measure, and then M() can do the same for the union
of all the rational shifts of E(), and one can then find an element x ∈ [0, 1]
such that no rational shift x+ q of x lies in E.)

On the other hand, if one is only allowed to query E() and M() finitely
many times, then one can show that one can adaptively build M() and
E() in response in these queries in such a way that one never obtains a
contradiction, while retaining the properties that the shifts of E() by the
rationals partition R. So a pathological liar can build a non-measurable set
but claim that it is measurable; the deception can sustain any finite number
of queries about the set and its measurability, but given a countable amount
of queries one can eventually demonstrate that there is an inconsistency (at
least for non-measurable sets coming from the coset partition of R by the
rationals).

Remark 1.12.5. Interestingly, the type of adaptive oracles one uses to cre-
ate non-measurable sets are not compatible with random number generation.
If one has access to a source of random real numbers (say in [0, 1]), then in
principle one can (almost surely) compute the Lebesgue measure in count-
able time of any subset E of [0, 1] accessed through a random oracle E() by
the Monte Carlo method : randomly sampling N points in [0, 1], counting
the proportion that lie in E, and then sending N →∞. However this only
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works properly if the oracle E() does not adapt to the various random in-
puts it is given, and is instead independent of these inputs. For instance, if
one were to use Monte Carlo methods to measure the non-measurable set E
described above, one would almost surely get that E has measure 1, as each
random number is almost certain to lie in a different coset of Q!.

1.12.4. The Banach-Tarski paradox. We now turn to the Banach-Tarski
paradox. The usual formulation of this paradox involves a partition of the
unit ball into pieces that can be rearranged (after rotations and translation)
to form two copies of the ball. To avoid some minor technicalities, we will
work instead on the unit sphere S2 with an explicit countable set Σ removed,
and establish the following version of the paradox:

Proposition 1.12.6 (Banach-Tarski paradox, reduced version). There ex-
ists a countable subset Σ of S2 and partition of S2\Σ into four disjoint pieces
E1 ∪ E2 ∪ E3 ∪ E4, such that E1 and E2 can be rotated to cover S2\Σ, and
E3 and E4 can also be rotated to cover S2\Σ.

Of course, from the rotation-invariant nature of Lebesgue measure on
the sphere, such a partition can only occur if at least one of E1, E2, E3, E4

are not Lebesgue measurable.

We return briefly to set theory and give the standard proof of this propo-
sition. The first step is to locate two rotations a, b in the orthogonal group
SO(3) which generate the free group 〈a, b〉. This can be done explicitly; for
instance one can take

a :=

 3/5 4/5 0
−4/5 3/5 0

0 0 1

 ; b :=

1 0 0
0 3/5 −4/5
0 4/5 3/5

 .

(See [Ta2010, §2.2] for a verification (using the ping-pong lemma) that a, b
do indeed generate the free group. Each rotation in 〈a, b〉 has two fixed
antipodal points in S2; we let Σ be the union of all these points. Then the
group 〈a, b〉 acts freely on the remainder S2\Σ.

Using the axiom of choice, we can then build a (non-measurable) subset
E of S2\Σ which consists of a single point from each orbit of 〈a, b〉. For each
i = 1, 2, 3, 4, we then define Ei to be the set of all points of the form wx,
where x ∈ E and w ∈ 〈a, b〉 is a word such that

• w is the identity, or begins with a (if i = 1);

• w begins with a−1 (if i = 2);

• w begins with b (if i = 3);

• w begins with b−1 (if i = 4).



1.12. A computational perspective on set theory 49

It is then clear that E1, E2, E3, E4 partition S2\Σ, while a−1E1 ∪ aE2 and
b−1E3 ∪ bE4 both cover S2\Σ, as claimed.

Now let us interpret this example using oracles. The free group 〈a, b〉 is
countably enumerable, and so with a countable amount of time and memory,
one can construct and store Σ without difficulty. A membership oracle E()
for E can then be constructed by an adaptive oracle much as in the previous
sections; E(x) returns yes if x is the first point in its orbit that is queried, and
returns no otherwise. The oracles Ei(x) can then be defined by querying E
for all the points in x’s orbit in some arbitrary order until one finds the point
w−1x which lies in E, and then deciding membership in Ei(x) depending on
the first symbol of w. (For instance, if x’s orbit has not been queried before,
the first point in the orbit that one queries E() for will lie in E; thus one
sees that the order in which one decides to search through the orbit will in
fact influence quite strongly what E and the Ei will look like.)

It is then not hard to show that E1(), E2(), E3(), E4() do indeed partition
S2\Σ in the sense that for each x ∈ S2\Σ, exactly one of E1(x), E2(x), E3(x), E4(x)
will return “yes”. Also, for any x ∈ S2\Σ, at least one of E1(ax), E2(a−1x)
will return “yes”, and at least one of E3(bx), E4(b−1x) will return “yes”.
Thus, after performing an uncountable number of queries to fully complete
all of these sets, we obtain sets obeying the properties in Proposition 1.12.6;
but the oracles that do this are perfectly deterministic, and run in only a
countable amount of time, at least for the first few queries (and one can
probably even trim it down to a finite amount of time, if one has an efficient
way of deciding whether two points lie in the same orbit of 〈a, b〉).

Now we discuss how a Banach-Tarski type construction does not work
in one or two dimensions. Let us just consider the one-dimensional case:

Proposition 1.12.7. There does not exist a decomposition of the unit in-
terval [0, 1) into finitely many sets E1, . . . , Ek such that some translates
E1 + x1, . . . , Ek + xk of these sets cover [0, 2).

We briefly review the proof of this proposition. Suppose for contradiction
that we have such a decomposition. We can colour the lattice Zk in k
colours 1, . . . , k, by giving each k-tuple (n1, . . . , nk) the colour i if n1x1 +
. . . + nkxk mod 1 ∈ Ei. This is clearly a k-colouring of Zk. Furthermore,
for every k-tuple ~n, we see that at ~n − ei has colour i for at least two
values of i = 1, . . . , k, where e1, . . . , ek is the standard basis for Zk. If one
then uses double-counting to get two different estimates for the number of
coloured points in a box {1, . . . , N}k for a large enough N , one obtains a
contradiction.

Note that this proof is quite finitary; given some real numbers x1, . . . , xk
and some membership oracles E1(), . . . , Ek(), one could convert the above
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argument into an algorithm that would be able to demonstrate in finite
time that either the oracles E1(), . . . , Ek() fail to partition [0, 1), or that the
translates E1() + x1, . . . , Ek() + xk fail to cover [0, 2); we leave this as an
exercise to the reader.

Remark 1.12.8. The key distinction here between the low and high di-
mensional cases is that the free group 〈a, b〉 is not amenable, whereas Zk is
amenable. See [Ta2010, §2.2, §2.8] for further discussion.

1.12.5. Summary. The above discussion suggests that it is possible to
retain much of the essential mathematical content of set theory without
the need for explicitly dealing with large sets (such as uncountable sets),
but there is a significant price to pay in doing so, namely that one has to
deal with sets on a “virtual” or “incomplete” basis, rather than with the
“completed infinities” that one is accustomed to in the standard modern
framework of mathematics. Conceptually, this marks quite a different ap-
proach to mathematical objects, and assertions about such objects; such
assertions are not simply true or false, but instead require a certain compu-
tational cost to be paid before their truth can be ascertained. This approach
makes the mathematical reasoning process look rather strange compared to
how it is usually presented, but I believe it is still a worthwhile exercise
to try to translate mathematical arguments into this computational frame-
work, as it illustrates how some parts of mathematics are in some sense
“more infinitary” than others, in that they require a more infinite amount
of computational power in order to model in this fashion. It also illustrates
why we adopt the conveniences of infinite set theory in the first place; while
it is technically possible to do mathematics without infinite sets, it can be
significantly more tedious and painful to do so.



Chapter 2

Group theory

2.1. Torsors

Given a (multiplicative) group G, a (left) G-space is a space X of states,
together with an action of the group G that allows each group element g ∈ G
to transform any given state x ∈ X to another state gx ∈ X, in a manner
compatible with the group law (in particular, ex = x for the group identity
e, and (gh)x = g(hx) for group elements g, h). One often also imposes
additional compatibility conditions with other structures on the space (e.g.
topological, differential, or algebraic structure).

A special case of a G-space is a principal G-homogeneous space or a G-
torsor, defined as a G-space which is uniquely transitive, i.e. given any two
states x, y ∈ X there is a unique group element g ∈ G such that gx = y;
inspired by this, one can write g as y/x. A G-torsor can be viewed as a copy
of the original group G, but one that does not necessarily have a preferred
identity element1

Many natural concepts in mathematics and physics are more naturally
torsor elements than groups. Consider for instance the concept of length. In
mathematics, one often ignores issues of units, and regards the length of a
line segment as taking values in the non-negative real line R+; but in the
absence of a preferred unit length scale, it is actually more natural to view
length as taking values in some R+-torsor, say L. To extract a non-negative
real number for the length |AB| of a line segment AB, one has to divide by
some unit length U ∈ L, such as a unit foot or a unit yard. For instance, if
AB is 30 feet long, and U is a unit foot, then |AB|/U = 30.

1If there is a preferred identity or origin element O, then one can place the G-torsor in
one-to-one correspondence with G by identifying gO with g for every group element g.
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Observe that changing units is a passive transformation (see Section 2.2
below) rather than an active one, and as such behaves in the inverse manner
to what one might naively expect. For instance, if one changes the unit
of length U from feet to yards, which is a unit that is three times larger,
then the numerical length |AB|/U of AB shrinks by a factor of 3: AB is 30
feet long, but is only 10 yards long. Thus, while a unit yard is three times
longer than a unit foot, the yard coordinate (the dual coordinate to the unit
yard, which converts lengths to positive real numbers) is one third of the
foot coordinate. (See Section 6.3 for further discussion.)

More generally, one can use torsors to rigorously set up the physical
concepts of units and dimensional analysis. The product of two lengths
in L is not another length, but instead takes values in another torsor, the
torsor L2 = L⊗R+ L of areas. One can use the square U2 of the unit length
as a unit area. The assertion that physical laws have to be dimensionally
consistent is then equivalent to the assertion that they are invariant with
respect to the passive transformation of changing the units.

Much as dimensionful units such as length or mass are torsors for the
non-negative reals, points in space are torsors for the translation group R3,
and (oriented) spatial coordinate frames are torsors for the linear group2

SL3(R) (if the origin is fixed) or SL3(R)nR3 (otherwise). And so forth. In-
deed, one can view basis vectors and coordinate systems as higher-dimensional
analogues of units and unit measurement coordinates respectively.

If one works with spacetime coordinate frames rather than spatial co-
ordinate frames, then the situation is similar, but the structure group will
be different (e.g. the Galilean group for Galilean relativity, the Poincare or
Lorentz group for special relativity, or the diffeomorphism group for general
relativity).

Viewing group elements as quotients of torsors is sometimes helpful when
trying to visualise operations such as conjugation h→ ghg−1; one can inter-
pret this operation as that of moving both the observer and the object by
g. For instance, consider the lamplighter group Z/2Z oZ, the wreath product
of Z/2Z with Z. One can define this group by using as a state space X the
configuration space of a doubly infinite sequence of lamps (indexed by the in-
tegers), with each lamp being either “on” or “off”, and with at most finitely
many of the lamps being “on”, together with the position of a lamplighter,
located at one of the lamps; more formally, we have X := (Z/2Z)Z0 × Z,
where (Z/2Z)Z0 is the space of compactly supported sequences from Z to
Z/2Z. The lamplighter has the ability to toggle the lamp on and off at his
or her current location, and also has the ability to move left or right. The

2If one insists on the coordinate frames being orthogonal, then the relevant group becomes
SO3(R) or the Euclidean group SO3(R) nR3, as appropriate.
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lamplighter group G is then the group of transformations on the state space
X that is generated by the following operations:

• e: Move the lamplighter one unit to the right.

• e−1: Move the lamplighter one unit to the left.

• f : Toggle the lamp at the current location of the lamplighter.

It is not hard to show that X then becomes a G-torsor.

One way to describe a group element of G is then to describe an initial
state A in X and a final state B in X, and then define B/A to be the unique
group element that transforms A to B; one can view B/A as a “program”
(e.g. made up of a string of e’s, e−1’s, and f ’s, or perhaps expressed in
a more “high-level” language) that one could give to a lamplighter that is
currently in the system A that would then transform it to B. Note that
multiple programs can give the same group element, for instance fefe−1 is
the same element of G as efe−1f . Also, multiple pairs A, B can give rise to
the same element3 B/A.

One can express any such “program” B/A in a canonical form as that
of “change the set S of lights, as described using one’s current location,
and then move n steps to the right (or left)”. This expresses the lamplighter
group as a semi-direct product of (Z/2Z)Z0 and Z. If the lamplighter position
does not change between A and B, then the program is simply that of
changing a set of lights, and B/A now lives in the abelian subgroup (Z/2Z)Z0
of the lamplighter group.

If one conjugates a group element B/A by another group element g,
one obtains the new group element g(B/A)g−1 = (gB)/(gA). A little
thought then reveals that the program needed to execute (gB)/(gA) is sim-
ilar to that for B/A, except that the set of lights S that one needs to
change has been modified. As such, we see that the commutator [g,B/A] =
((gB)/(gA))/(B/A) is an element of the abelian subgroup (Z/2Z)Z0 , making
the lamplighter group metabelian and thus solvable.

I found this sort of torsor-oriented perspective useful when thinking
about such concepts as that of a harmonic function on a group G (some-
thing that comes up, for instance, in modern proofs of Gromov’s theorem
regarding groups of polynomial growth, see Section 2.5). One can instead
think about a harmonic function on a G-torsor X, defined as an “energy
functional” on such a space with the property that the energy of any state
is equal to the average energy of the neighbouring states (at least if the
group G is discrete; for continuous groups, one has to neglect higher order
terms). If the group G is not commutative, then actively transforming the

3This perspective is a generalisation of the standard way of visualising a spatial vector as an
arrow from one spatial point A to another spatial point B.
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states can destroy the harmonicity property; but passively transforming the
states does not. It is because of this that the space of (right)-harmonic
functions still has a left G-action, and vice versa.

2.2. Active and passive transformations

Consider the following (somewhat informally posed) questions:

Question 2.2.1. Let T be equilateral triangle in a plane whose vertices are
labeled 1, 2, 3 in clockwise order. Define the following two operations on
this triangle:

• F : Flip the triangle to swap the vertices 2 and 3, while keeping 1
fixed.

• R: Rotate the triangle clockwise in the plane by 120 degrees.

Do the operations F and R commute, i.e. does F ◦R = R ◦ F?

Question 2.2.2. Suppose one is viewing some text on a computer screen.
The text is so long that one cannot display all of it at once on a screen:
currently, only a middle portion of the text is visible. To see more of the
text, we press the “up” arrow key (or click the “up” button). When one does
so, does the text on the screen move up or down?

We discuss Question 2.2.2 first. The answer depends on the user interface
model. Most such models are passive transformations; the “up” command
moves the observer up, and one’s view of the text then moves down as a
consequence. A minority of models (such as “hand” tools in various pieces of
software) are instead active transformations; dragging a hand tool upwards
causes the text to move upward (keeping the observer position fixed).

In some cases, the model used may be ambiguous at first. If one is
viewing a map, does the “+” key cause the map image on the screen to
enlarge, or shrink? Somewhat confusingly, two different pieces of mapping
software can respond in opposite ways to such a command; some use active
transformation models (“+” makes the world bigger, so that less of the
world remains inside the viewscreen), and others use passive transformation
models (“+” makes the observer bigger, so that more of the world can now
fit inside the viewscreen).

This question is a special case of the double action of a group G on itself
(or more generally, on a left G-torsor, as discussed in Section 2.1). Imagine
that inside a group G (or left G-torsor) one has an observer O and an object
X; there exists a unique group element g = X/O such that X = gO, and in
that case we say that X has an apparent position of g from the perspective
of the observer O.
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We can then change this apparent position in two different ways. Firstly,
we may apply an active transformation, and shift the object X by a group
element h to move it to hX = hgO; the apparent position of the object then
shifts from g to hg, and so the active transformation corresponds to the left
action of the group G on itself.

Or, we may apply a passive transformation, and shift the observer O by
a group element h to move it to hO; since X = gO = gh−1(hO), we see that
the apparent position shifts from g to gh−1. Thus the passive transformation
corresponds to the right action of G on itself.

Note the presence of the inverse in the passive transformation; it is this
inverse which is the source of the confusions mentioned above.

The distinction between active and passive transformations also arises
when trying to direct the motion of another person. “Move left! No, your
other left!”

Even if the group G is non-commutative, the left-action of G and the
right-action of G will still commute with each other, as moving an object
and moving the observer can be done in either order without any difference
to the final state of the system.

And now we can answer Question 2.2.1. The answer is that it depends
on whether one interprets the operations F and R as active operations or
passive operations; the phrasing of the question makes it ambiguous.

For instance, we can treat the flip operation F as an active transforma-
tion, by viewing the labels 1, 2, 3 as being attached4 to the triangle object
being manipulated. As one applies F , the labels 1 and 2 physically change
locations.

Or, one can view the flip operation F as a passive transformation, caused
by motion of the observer rather than the object. Here, the labels 1, 2, 3 are
attached to the observer rather than to the object (and are usually displayed
outside the triangle). The operation F flips the triangle, but the labels 1,
2, 3 remain where they are.

The difference between the two interpretations of F becomes apparent
once the object’s value of 3 moves away from the observer’s value of 3, as
they are then flipping the triangle across different axes.

Similarly, one can view the rotation operation R as an active rotation, in
which the triangle is physically rotated in the direction which is clockwise in
its own orientation, or as a passive rotation in which the triangle is rotated in
the direction which is clockwise in the observer’s orientation (or equivalently,
the observer is rotated in a counter-clockwise direction).

4This is usually drawn by placing the labels 1, 2, 3 inside the triangle.
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The difference between the two interpretations of R becomes apparent
once the triangle is flipped over, so that its orientation is the opposite of
that of the observer.

If F is active and R is passive (or vice versa), then the transforma-
tions commute. But if F and R are both active or both passive, then the
transformations do not commute.

In order to fully remove all ambiguity from the system, one needs to
label the vertices of the triangle twice: first by an “external” labeling (e.g.
A, B, C) which is not affected by any of the transformations, and secondly
by an “internal” labeling (e.g. 1, 2, 3) which moves with the operations
being applied. Traditionally, the external labels are displayed outside the
triangle, and the internal vertices are displayed inside the triangle. Simi-
larly, one needs to display an external orientation (e.g. a counterclockwise
arrow, displayed outside the triangle) that is not affected by the operations
being applied, and also an internal orientation (e.g. another counterclock-
wise arrow, displayed inside the triangle) that can get flipped over by the
operations being applied. There are then four operations of interest:

(1) Active-F : Flip the triangle across the axis given by the vertex
internally labeled 3, thus swapping the vertices internally labeled
1, 2, and also reversing the internal orientation.

(2) Passive-F : Flip the triangle across the axis given by the vertex ex-
ternally labeled C, thus swapping the internal labels of the vertices
that are externally labeled A, B, and also reversing the internal
orientation.

(3) Active-R: Rotate the triangle by 120 degrees in the internally clock-
wise direction, moving the internal labels appropriately.

(4) Passive-R: Rotate the triangle by 120 degrees in the externally
clockwise direction, moving the internal labels appropriately.

Then the two passive transformations commute with the two active
transformations, but the two passive transformations do not commute with
each other, and neither do the two active transformations. (It is instructive
to work this out on paper, physically cutting out a triangle if necessary.)

2.3. Cayley graphs and the geometry of groups

In most undergraduate courses, groups are first introduced as a primarily
algebraic concept - a set equipped with a number of algebraic operations
(group multiplication, multiplicative inverse, and multiplicative identity)
and obeying a number of rules of algebra (most notably the associative
law). It is only somewhat later that one learns that groups are not solely an
algebraic object, but can also be equipped with the structure of a manifold
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Figure 1. Cayley graph of Z/6Z with generator 1 (in green).

(giving rise to Lie groups) or a topological space (giving rise to topological
groups). (See also [Ta2010b, §1.14] for a number of other ways to think
about groups.)

Another important way to enrich the structure of a group G is to give it
some geometry. A fundamental way to provide such a geometric structure
is to specify a list of generators S of the group G. Let us call such a pair
(G,S) a generated group; in many important cases the set of generators S is
finite, leading to a finitely generated group. A generated group (G,S) gives
rise to the word metric d : G × G → N on G, defined to be the maximal
metric for which d(x, sx) ≤ 1 for all x ∈ G and s ∈ S (or more explicitly,
d(x, y) is the least m for which y = sε11 . . . sεmm x for some s1, . . . , sm ∈ S and
ε1, . . . , εm ∈ {−1,+1}). This metric then generates the balls BS(R) := {x ∈
G : d(x, id) ≤ R}. In the finitely generated case, the BS(R) are finite sets,
and the rate at which the cardinality of these sets grow in R is an important
topic in the field of geometric group theory. The idea of studying a finitely
generated group via the geometry of its metric goes back at least to the
work of Dehn [De1912].

One way to visualise the geometry of a generated group is to look at the
(labeled) Cayley colour graph (or Cayley graph, for short) of the generated
group (G,S). This is a directed coloured graph, with edges coloured by
the elements of S, and vertices labeled by elements of G, with a directed
edge of colour s from x to sx for each x ∈ G and s ∈ S. The word metric
then corresponds to the graph metric of the Cayley graph. See for instance
Figure 1 and Figure 2.

We can thus see that the same group can have somewhat different ge-
ometry if one changes the set of generators. For instance, in a large cyclic
group Z/NZ, with a single generator S = {1} the Cayley graph “looks one-
dimensional”, and balls BS(R) grow linearly in R until they saturate the
entire group, whereas with two generators S = {s1, s2} chosen at random,
the Cayley graph “looks two-dimensional”, and the balls BS(R) typically
grow quadratically until they saturate the entire group.
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Figure 2. Cayley graph of Z/6Z with generators 2 (in blue) and 3 (in red).

Cayley graphs have three distinguishing properties:

• (Regularity) For each colour s ∈ S, every vertex x has a single
s-edge leading out of x, and a single s-edge leading into x.

• (Connectedness) The graph is connected.

• (Homogeneity) For every pair of vertices x, y, there is a unique
coloured graph isomorphism that maps x to y.

It is easy to verify that a directed coloured graph is a Cayley graph (up
to relabeling) if and only if it obeys the above three properties. Indeed,
given a graph (V,E) with the above properties, one sets G to equal the
(coloured) automorphism group of the graph (V,E); arbitrarily designating
one of the vertices of V to be the identity element id, we can then identify
all the other vertices in V with a group element. One then identifies each
colour s ∈ S with the vertex that one reaches from id by an s-coloured edge.
Conversely, every Cayley graph of a generated group (G,S) is clearly regular,
is connected because S generates G, and has isomorphisms given by right
multiplication x 7→ xg for all g ∈ G. (The regularity and connectedness
properties already ensure the uniqueness component of the homogeneity
property.)

From the above equivalence, we see that we do not really need the vertex
labels on the Cayley graph in order to describe a generated group, and so
we will now drop these labels and work solely with unlabeled Cayley graphs,
in which the vertex set is not already identified with the group. As we
saw above, one just needs to designate a marked vertex of the graph as the
“identity” or “origin” in order to turn an unlabeled Cayley graph into a
labeled Cayley graph; but from homogeneity we see that all vertices of an
unlabeled Cayley graph “look the same” and there is no canonical preference
for choosing one vertex as the identity over another. I prefer here to keep
the graphs unlabeled to emphasise the homogeneous nature of the graph.
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Figure 3. Cayley graph of S3.

It is instructive to revisit the basic concepts of group theory using the
language of (unlabeled) Cayley graphs, and to see how geometric many of
these concepts are. In order to facilitate the drawing of pictures, I work
here only with small finite groups (or Cayley graphs), but the discussion
certainly is applicable to large or infinite groups (or Cayley graphs) also.

For instance, in this setting, the concept of abelianness is analogous to
that of a flat (zero-curvature) geometry: given any two colours s1, s2, a
directed path with colours s1, s2, s

−1
1 , s−1

2 (adopting the obvious convention
that the reversal of an s-coloured directed edge is considered an s−1-coloured
directed edge) returns to where it started5. Thus, for instance, the two
depictions of Z/6Z above are abelian, whereas the group S3, which is also the
dihedral group of the triangle, and thus admits the Cayley graph depicted
in Figure 3, is not abelian.

A subgroup (G′, S′) of a generated group (G,S) can be easily described
in Cayley graph language if the generators S′ of G′ happen to be a sub-
set of the generators S of G. In that case, if one begins with the Cayley
graph of (G,S) and erases all colours except for those colours in S′, then
the graph foliates into connected components, each of which is isomorphic
to the Cayley graph of (G′, S′). For instance, in the above Cayley graph de-
piction of S3, erasing the blue colour leads to three copies of the red Cayley
graph (which has Z/2Z as its structure group), while erasing the red colour
leads to two copies of the blue Cayley graph (which as A3 ≡ Z/3Z as its
structure group). If S′ is not contained in S, then one has to first “change
basis” and add or remove some coloured edges to the original Cayley graph
before one can obtain this formulation (thus for instance S3 contains two

5Note that a generated group (G,S) is abelian if and only if the generators in S pairwise
commute with each other.
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more subgroups of order two that are not immediately apparent with this
choice of generators). Nevertheless the geometric intuition that subgroups
are analogous to foliations is still quite a good one.

We saw that a subgroup (G′, S′) of a generated group (G,S) with S′ ⊂ S
foliates the larger Cayley graph into S′-connected components, each of which
is a copy of the smaller Cayley graph. The remaining colours in S then join
those S′-components to each other. In some cases, each colour s ∈ S\S′ will
connect a S′-component to exactly one other S′-component; this is the case
for instance when one splits S3 into two blue components. In other cases,
a colour s can connect a S′-component to multiple S′-components; this is
the case for instance when one splits S3 into three red components. The
former case occurs precisely when6 the subgroup G′ is normal. We can then
quotient out the (G′, S′) Cayley graph from (G,S), leading to a quotient
Cayley graph (G/G′, S\S′) whose vertices are the S′-connected components
of (G,S), and the edges are projected from (G,S) in the obvious manner. We
can then view the original graph (G,S) as a bundle of (G′, S′)-graphs over
a base (G/G′, S\S′)-graph (or equivalently, an extension of the base graph
(G/G′, S\S′) by the fibre graph (G′, S′)); for instance S3 can be viewed as
a bundle of the blue graph A3 over the red graph Z/2Z, but not conversely.
We thus see that the geometric analogue of the concept of a normal subgroup
is that of a bundle. The generators in S\S′ can be viewed as describing a
connection on that bundle.

Note, though, that the structure group of this connection is not simply
G′, unless G′ is a central subgroup; instead, it is the larger group G′ o
Aut(G′), the semi-direct product of G′ with its automorphism group. This
is because a non-central subgroup G′ can be “twisted around” by operations
such as conjugation g′ 7→ sg′s−1 by a generator s ∈ S. So central subgroups
are analogous to the geometric notion of a principal bundle. For instance,
Figure 4 depicts the Heisenberg group1 F2 F2

0 1 F2

0 0 1


over the field F2 of two elements, which one can view as a central extension
of F2

2 (the blue and green edges, after quotienting) by F2 (the red edges).
Note how close this group is to being abelian; more generally, one can think
of nilpotent groups as being a slight perturbation of abelian groups.

In the case of S3 (viewed as a bundle of the blue graph A3 over the red
graph Z/2Z), the base graph Z/2Z is in fact embedded (three times) into the
large graph S3. More generally, the base graph (G/G′, S\S′) can be lifted

6Note that a subgroup G′ of a generated group (G,S) is normal if and only if left-
multiplication by a generator of S maps right-cosets of G′ to right-cosets of G′.
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Figure 4. The Heisenberg group over F2.

Figure 5. The group Z/9Z, with generators 1 (in blue) and 3 (in red).

back into the extension (G,S) if and only if the short exact sequence 0 →
G′ → G → G/G′ → 0 splits, in which case G becomes a semidirect product
G ≡ G′oH of G′ and a lifted copy H of G/G′. Not all bundles can be split
in this fashion. For instance, consider the group Z/9Z depicted in Figure 5.
This is a Z/3Z-bundle over Z/3Z that does not split; the blue Cayley graph
of Z/3Z is not visible in the Z/9Z graph directly, but only after one quotients
out the red fibre subgraph. The notion of a splitting in group theory is
analogous to the geometric notion of a global gauge (see [Ta2009b, §1.4]).
The existence of such a splitting or gauge, and the relationship between
two such splittings or gauges, are controlled by the group cohomology of the
sequence 0→ G′ → G→ G/G′ → 0.

Even when one has a splitting, the bundle need not be completely trivial,
because the bundle is not principal, and the connection can still twist the
fibres around. For instance, S3 when viewed as a bundle over Z/2Z with
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Figure 6. The Klein four-group Z/2Z× Z/2Z..

fibres A3 splits, but observe that if one uses the red generator of this splitting
to move from one copy of the blue A3 graph to the other, that the orientation
of the graph changes. The bundle is trivialisable if and only if G′ is a direct
summand of G, i.e. G splits as a direct product G = G′×H of a lifted copy
H of G/G′. Thus we see that the geometric analogue of a direct summand is
that of a trivialisable bundle (and that trivial bundles are then the analogue
of direct products). Note that there can be more than one way to trivialise
a bundle. For instance, with the Klein four-group Z/2Z × Z/2Z depicted
in Figure 6, the red fibre Z/2Z is a direct summand, but one can use either
the blue lift of Z/2Z or the green lift of Z/2Z as the complementary factor.

2.4. Group extensions

In mathematics, one frequently starts with some space X and wishes to
extend it to a larger space Y . Generally speaking, there are two ways in
which one can extend a space X:

• By embedding X into a space Y that has X (or at least an isomor-
phic copy of X) as a subspace.

• By covering X by a space Y that has X (or an isomorphic copy
thereof) as a quotient.

For many important categories of interest (such as abelian categories),
the former type of extension can be represented by the exact sequence,

0→ X → Y

and the latter type of extension be represented by the exact sequence

Y → X → 0.

In some cases, X can be both embedded in, and covered by, Y , in a consistent
fashion; in such cases we sometimes say that the above exact sequences split.
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An analogy would be to that of digital images. When a computer rep-
resents an image, it is limited both by the scope of the image (what it is
picturing), and by the resolution of an image (how much physical space is
represented by a given pixel). To make the image “larger”, one could either
embed the image in an image of larger scope but equal resolution (e.g. em-
bedding a picture of a 200×200 pixel image of person’s face into a 800×800
pixel image that covers a region of space that is four times larger in both
dimensions, e.g. the person’s upper body) or cover the image with an image
of higher resolution but of equal scope (e.g. enhancing a 200 × 200 pixel
picture of a face to a 800× 800 pixel of the same face). In the former case,
the original image is a sub-image (or cropped image) of the extension, but
in the latter case the original image is a quotient (or a pixelation) of the
extension. In the former case, each pixel in the original image can be iden-
tified with a pixel in the extension, but not every pixel in the extension is
covered. In the latter case, every pixel in the original image is covered by
several pixels in the extension, but the pixel in the original image is not
canonically identified with any particular pixel in the extension that covers
it; it “loses its identity” by dispersing into higher resolution pixels.

Remark 2.4.1. Note that “zooming in” the visual representation of an
image by making each pixel occupy a larger region of the screen neither
increases the scope or the resolution; in this language, a zoomed-in version
of an image is merely an isomorphic copy of the original image; it carries the
same amount of information as the original image, but has been represented
in a new coordinate system which may make it easier to view.

In the study of a given category of spaces (e.g. topological spaces, man-
ifolds, groups, fields, etc.), embedding and coverings are both important;
this is particularly true in the more topological areas of mathematics, such
as manifold theory. But typically, the term extension is reserved for just one
of these two operations. For instance, in the category of fields, coverings are
quite trivial; if one covers a field k by a field l, the kernel of the covering
map π : l → k is necessarily trivial and so k, l are in fact isomorphic. So in
field theory, a field extension refers to an embedding of a field, rather than
a covering of a field. Similarly, in the theory of metric spaces, there are
no non-trivial isometric coverings of a metric space, and so the only useful
notion of an extension of a metric space is the one given by embedding the
original space in the extension.

On the other hand, in group theory (and in group-like theories, such
as the theory of dynamical systems, which studies group actions), the term
“extension” is reserved for coverings, rather than for embeddings. I think
one of the main reasons for this is that coverings of groups automatically
generate a special type of embedding (a normal embedding), whereas most
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embeddings don’t generate coverings. More precisely, given a group exten-
sion G of a base group H,

G→ H → 0,

one can form the kernel K = ker(φ) of the covering map π : G→ H, which
is a normal subgroup of G, and we thus can extend the above sequence
canonically to a short exact sequence

0→ K → G→ H → 0.

On the other hand, an embedding of K into G,

0→ K → G

does not similarly extend to a short exact sequence unless the the embedding
is normal.

Another reason for the notion of extension varying between embeddings
and coverings from subject to subject is that there are various natural du-
ality operations (and more generally, contravariant functors) which turn
embeddings into coverings and vice versa. For instance, an embedding of
one vector space V into another W induces a covering of the dual space V ∗

by the dual space W ∗, and conversely; similarly, an embedding of a locally
compact abelian group H in another G induces a covering of the Pontryagin
dual Ĥ by the Pontryagin dual Ĝ. In the language of images, embedding an
image in an image of larger scope is largely equivalent to covering the Fourier
transform of that image by a transform of higher resolution, and conversely;
this is ultimately a manifestation of the basic fact that frequency is inversely
proportional to wavelength.

Similarly, a common duality operation arises in many areas of mathe-
matics by starting with a space X and then considering a space C(X) of
functions on that space (e.g. continuous real-valued functions, if X was a
topological space, or in more algebraic settings one could consider homo-
morphisms from X to some fixed space). Embedding X into Y then induces
a covering of C(X) by C(Y ), and conversely, a covering of X by Y induces
an embedding of C(X) into C(Y ). Returning again to the analogy with
images, if one looks at the collection of all images of a fixed scope and
resolution, rather than just a single image, then increasing the available res-
olution causes an embedding of the space of low-resolution images into the
space of high-resolution images (since of course every low-resolution image
is an example of a high-resolution image), whereas increasing the available
scope causes a covering of the space of narrow-scope images by the space
of wide-scope images (since every wide-scope image can be cropped into a
narrow-scope image). Note in the case of images, that these extensions can
be split: not only can a low-resolution image be viewed as a special case
of a high-resolution image, but any high-resolution image can be pixelated
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into a low-resolution one. Similarly, not only can any wide-scope image be
cropped into a narrow-scope one, a narrow-scope image can be extended to
a wide-scope one simply by filling in all the new areas of scope with black
(or by using more advanced image processing tools to create a more visu-
ally pleasing extension). In the category of sets, the statement that every
covering can be split is precisely the axiom of choice.

I’ve recently found myself having to deal quite a bit with group exten-
sions in my research, so I have decided to make some notes on the basic
theory of such extensions. This is utterly elementary material for a group
theorist, but I found this task useful for organising my own thoughts on this
topic, and also in pinning down some of the jargon in this field.

2.4.1. Basic concepts.

Definition 2.4.2 (Group extension). An extension of a group H is a group
G, together with a surjective projection map (or covering map) π : G→ H.
If the kernel of π can be identified with (i.e. is isomorphic to) a group K, we
say that G is an extension of H by K, and we have the short exact sequence

0→ K → G→ H → 0.

If the group K has some property P, we say that G is a P extension of
H. Thus for instance, if K is abelian, G is an abelian extension of H; if K
is central (in G), G is a central extension of H; and so forth. We refer to
H as the base of the extension, and K as the fibre, and refer to H and K
collectively as factors of G.

If K has some property P, and H has some property Q, then we say
that7 G is P-by-Q. Thus, for instance, G is abelian-by-finite if K is abelian
and H is finite, but finite-by-abelian if K is finite and H is abelian.

One can think of a K-by-H group as a group that looks like H “at
large scales” and like K “at small scales”; one can also view this group as a
principal K-bundle over H.

There are several ways to generate a group extension G → H → 0.
Firstly, given any homomorphism π : G→ G′ from one group G to another,
the homomorphism theorem tells us that G is an extension of the image
π(G), with kernel ker(π):

0→ ker(π)→ G→ π(G)→ 0.

Conversely, every group extension arises in this manner.

7I have no idea why the order is traditionally arranged in this way; I would have thought
that extending a Q group by a P group would give a P-by-Q group, rather than the other way

around; perhaps at one point the idea of a normal embedding was considered more important
than a group extension. Nevertheless, the notation seems to be entrenched by now.
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A group extension π : G→ H splits if there is a homomorphism φ : H →
G such that π(φ(h)) = h for all h ∈ H. In this case, H acts on the kernel
K by conjugation (after identifying H with φ(H)); denoting this action by
ρ (thus ρ(h)k := φ(h)kφ(h)−1), we can then canonically identify G with the
semi-direct product K oρ H, defined as the set of pairs (k, h) with k ∈ K,
h ∈ H, with the group law (k, h)(k′, h′) := (kρ(h)(k′), hh′), by identifying
(k, h) with kφ(h). Conversely, every semi-direct product K oρH is a group
extension of H by K which splits. If the conjugation action ρ is trivial, then
the semi-direct product simplifies to the direct product K×H. In particular,
any semi-direct product which is a central extension is of this form.

Note that, in general, an extension of H by K is a different concept from
an extension of K by H, because one can have H as a normal subgroup
but not as a quotient, or vice versa. For instance, S3 has A3 as a normal
subgroup, but not as a quotient; S3 is an extension of Z/2Z by A3, but not
vice versa. To put it another way, the operator “-by-” is not commutative:
H-by-K is a different concept from K-by-H.

A subgroup L of an K-by-H group G is automatically an K ′-by-H ′

group for some subgroups H ′,K ′ of H,K respectively; this is essentially
Goursat’s lemma. Indeed, one can take K ′ := K ∩L and H ′ := π(L), where
π : G → H is the projection map. Furthermore, the index of the subgroup
is the product of the index of H ′ in H, and the index of K ′ in K.

Some standard notions in group theory can be defined using group ex-
tensions:

(1) A metabelian group is the same thing as an abelian-by-abelian
group, i.e. an abelian extension of an abelian group.

(2) A metacyclic group is the same thing as an cyclic-by-cyclic group,
i.e. a cyclic extension of a cyclic group.

(3) A polycyclic group is defined recursively by declaring the trivial
group to be polycyclic of length 0, and defining a polycyclic group
of length l to be an extension of a cyclic group by a polycyclic
group of length l − 1. Thus polycyclic groups are polycyclic-by-
cyclic, where the polycyclic factor has a shorter length than the
full group.

(4) A supersolvable group is defined recursively by declaring the trivial
group to be supersolvable of length 0, and defining a supersolvable
group of length l to be a cyclic extension supersolvable group of
length l−1. Thus supersolvable groups are cyclic-by-supersolvable,
where the supersolvable factor has a shorter length that the full
group. In other words, supersolvable groups are towers of cyclic
extensions.
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(5) A solvable group is defined recursively by declaring the trivial group
to be solvable of length 0, and defining a solvable group of length
l to be an extension of an abelian group by a solvable group of
length l − 1. Thus solvable groups are solvable-by-abelian, where
the solvable factor has a shorter length. One can equivalently define
solvable groups as abelian-by-solvable, where the solvable factor
again has a shorter length (because the final term in the derived
series is abelian and normal). In other words, a solvable group is
a tower of abelian extensions.

(6) A nilpotent group is defined recursively by declaring the trivial
group to be nilpotent of step 0, and defining a nilpotent group of
step s to be a central extension of a nilpotent group of step s− 1,
thus nilpotent groups are central-by-nilpotent. In other words, a
nilpotent group is a tower of central extensions.

Remark 2.4.3. The inclusions here are: cyclic implies abelian implies
metabelian implies solvable, cyclic implies metacyclic implies supersolv-
able implies polycyclic implies solvable, metacyclic implies metabelian, and
abelian implies nilpotent implies solvable.

The trivial group is the identity for the “-by-” operator: trivial-by-P or
P-by-trivial is the same thing as P.

Now we comment on the associativity of the “-by-” operator. If N,H,K
are groups, observe that an N -by-(H-by-K) group (i.e. an extension of an
H-by-K group by N) is automatically an (N -by-H)-by-K group (i.e. an
extension of K by an N -by-H group), since if we denote G by the N -by-(H-
by-K) group, and π the quotient map from G to the H-by-K group, then
π−1(H) is a N -by-H normal subgroup of G whose quotient is K. Thus, for
instance, every cyclic-by-metacyclic group is metacyclic-by-cyclic, and more
generally every supersolvable group is polycyclic.

On the other hand, the converse is not true: not every (N -by-H)-by-K
group is an N -by-(H-by-K) group. The problem is that N is normal in the
N -by-H group, but need not be normal in the (N -by-H)-by-K group. For
instance, the semi-direct product Z2 o SL2(Z) is (Z-by-Z)-by-SL2(Z) but
not Z-by-(Z-by-SL2(Z)). So the “-by-” operation is not associative in gen-
eral (for instance, there are polycyclic groups that are not supersolvable).
However, if N is not just normal in the N -by-H group, but is character-
istic in that group (i.e. invariant under all (outer) automorphisms of that
group), then it is automatically normal in the larger (N -by-H)-by-K group,
and then one can interpret the (N -by-H)-by-K group as an N -by-(H-by-
K) group. So one recovers associativity when the first factor is character-
istic. This explains why solvable groups can be recursively expressed both
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as abelian-by-solvable, and equivalently as solvable-by-abelian; this is ulti-
mately because the commutator subgroup [G,G] is a characteristic subgroup
of G. An easy but useful related observation is that solvable-by-solvable
groups are again solvable (with the length of the product being bounded by
the sum of the length of the factors).

Given a group property P, a group G is said to be virtually P if it has
a finite index subgroup with the property P; thus for instance a virtually
abelian group is one with a finite index abelian subgroup, and so forth. As
another example, “finite” is the same as “virtually trivial”. The property
of being virtually P is not directly expressible in terms of group extensions
for arbitrary properties P; however, if the group property P is hereditary
in the sense that subgroups of a P group are also P, then a virtually P
group is the same concept as a P-by-finite group. This is because every
finite index subgroup H of a group G automatically contains8 a finite index
normal subgroup of G.

One also observes that if P, Q are hereditary properties, then the prop-
erty of P-by-Q is hereditary also; if 0 → P → G → Q → 0 is a P-by-Q
group, and G′ is a subgroup of G, then the short exact sequence

0→ (P ∩G′)→ G′ → π(G′)→ 0,

where π : G→ Q is a projection map, demonstrates that G′ is also a P-by-
Q group. Thus for instance the properties of being metabelian, metacyclic,
polycyclic, supersolvable, solvable, or nilpotent, are hereditary. As a conse-
quence, virtually nilpotent is the same as nilpotent-by-finite, etc.

We saw for hereditary properties P that “P-by-finite” was the same
concept as “virtually P”. It is natural to ask whether the same is true
for “finite-by-P”. The answer is no; for instance, one can extend the an
infinite vector space V over a finite field F by F (using some non-degenerate
bilinear anti-symmetric form ω : V × V → F , and defining (v, f)(w, g) =
(v+w, f+g+ω(v, w)) for v, w ∈ V and f, g ∈ F ) to create a nilpotent group
which is finite-by-abelian, but not virtually abelian. Conversely, the semi-
direct product Z o Z/2Z (where Z/2Z acts on Z by reflection) is virtually
abelian, but not finite-by-abelian. On the other hand, for hereditary P, a
finite-by-P group is virtually (central finite)-by-P. This is because if G is
an extension of a P group P by a finite group F , then G acts by conjugation
on the finite group F ; the stabiliser G′ of this action is then a finite index
subgroup, whose intersection of F is then central in G′. The projection of
G′ onto P is also a P group by the hereditary nature of P, and the claim
follows.

8Proof: G acts on the finite quotient space G/H by left multiplication, hence the stabiliser
of G/H has finite index in G. But this stabliser is also normal in G and contained in H.
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Remark 2.4.4. There is a variant of the above result which is also useful.
Suppose one has an H-by-K group G in which the action of K on H is vir-
tually trivial (i.e. there are only a finite number of distinct automorphisms
of H induces by K). Then G is virtually a central H ′-by-K ′ group for some
finite index subgroups H ′,K ′ of H,K.

One can phrase various results in group theory in a succinct form using
this notation. For instance, one of the basic facts about (discrete) amenable
groups is that amenable-by-amenable groups are amenable; see [Ta2010,
§2.8]. As another example, the main result of a well-known paper of Larsen
and Pink [LaPi2011] is a classification of finite linear groups over a field of
characteristic p, namely that such groups are virtually (p-group by abelian)
by (semisimple of Lie type), where one has bounds on the index of the
“virtually” and on the type of the semisimple group.

2.5. A proof of Gromov’s theorem

A celebrated theorem of Gromov [Gr1981] reads:

Theorem 2.5.1 (Gromov’s theorem). Every finitely generated group of
polynomial growth is virtually nilpotent.

The original proof of Gromov’s theorem was quite non-elementary, us-
ing an infinitary limit and exploiting the work surrounding the solution to
Hilbert’s fifth problem. More recently, Kleiner [Kl2010] provided a proof
which was more elementary (based in large part on an earlier paper of Cold-
ing and Minicozzi [CoMi1997]), though still not entirely so, relying in part
on (a weak form of the) Tits alternative [Ti1972] and also on an ultrafilter
argument of Korevaar-Schoen [KoSc1997] and Mok [Mo1995]. Kleiner’s
argument is discussed further in [Ta2009, §1.2].

Recently, Yehuda Shalom and I [ShTa2010] established a quantitative
version of Gromov’s theorem by making every component of Kleiner’s argu-
ment finitary. Technically, this provides a fully elementary proof of Gromov’s
theorem (we do use one infinitary limit to simplify the argument a little bit,
but this is not truly necessary); however, because we were trying to quantify
as much of the result as possible, the argument became quite lengthy.

In this note I want to record a short version of the argument of Yehuda
and myself which is not quantitative, but gives a self-contained and largely
elementary proof of Gromov’s theorem. The argument is not too far from
the Kleiner argument, but incorporates a number of simplifications. In a
number of places, there was a choice to take between a short argument that
was “inefficient” in the sense that it did not lead to a good quantitative
bound, and a lengthier argument which led to better quantitative bounds.
I have opted for the former in all such cases.
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2.5.1. Overview of argument. The argument requires four separate in-
gredients. The first is the existence of non-trivial Lipschitz harmonic func-
tions f : G→ R:

Theorem 2.5.2 (Existence of non-trivial Lipschitz harmonic functions).
Let G be an infinite group generated by a finite symmetric set S. Then there
exists a non-constant function f : G → R which is harmonic in the sense
that

f(x) =
1

|S|
∑
s∈S

f(xs)

for all x ∈ G, and Lipschitz in the sense that

|f(x)− f(sx)| ≤ C
for all x ∈ G and s ∈ S, and some C <∞.

The second is that there are not too many such harmonic functions:

Theorem 2.5.3 (Kleiner’s theorem). Let G be a group of polynomial growth
generated by a finite symmetric set S of generators. Then the vector space
V of Lipschitz harmonic functions is finite-dimensional.

The third ingredient is that Gromov’s theorem is true in the compact
linear group case:

Theorem 2.5.4 (Gromov’s theorem in the compact linear case). Let G be
a finitely generated subgroup of a compact linear group H ⊂ GLn(C) of
polynomial growth. Then G is virtually abelian.

The final ingredient is that Gromov’s theorem is inductively true once
one can locate an infinite cyclic quotient:

Theorem 2.5.5 (Gromov’s theorem with an cyclic quotient). Let G be a
finitely generated group which has polynomial growth of exponent at most
d (i.e. the volume of a ball BS(r) grows like O(rd) for any fixed set of
generators S). Suppose inductively that Gromov’s theorem is already known
for groups of polynomial growth of exponent at most d− 1, and suppose that
G contains a finite index subgroup G′ which can be mapped homomorphically
onto an infinite cyclic group. Then G is virtually nilpotent.

We prove these four facts in later sections. For now, let us see how they
combine to establish Gromov’s theorem in full generality.

We assume that G has polynomial growth of order d, and assume in-
ductively that Gromov’s theorem has already been established for growth
of order d− 1 or less. We fix a symmetric set S of generators.

We may assume that G is infinite otherwise we are already done. So
by Theorem 2.5.2, the space V of (complex) Lipschitz harmonic functions
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consists of more than just the constants R. In particular, setting W := V/C,
we have a non-trivial short exact sequence

0→ C→ V →W → 0.

The left translation action of G preserves the space of Lipschitz harmonic
functions, and is thus an action of G on V . Since G preserves constants, it
is also an action of G on W . Now, on W , the homogeneous Lipschitz norm
is a genuine norm, and is preserved by the action of G. Since all norms are
equivalent on a finite-dimensional space, we can place an arbitrary Euclidean
structure on W and conclude that this structure is preserved up to constants
by G. So, the image of the action of G on W is precompact, and thus its
closure is a compact linear group. By Theorem 2.5.4, this image is virtually
abelian. If it is infinite, then we thus see that a finite index subgroup of G
has an infinite abelian image, and thus has a surjective homomorphism onto
the integers, and we are done by Theorem 2.5.5. So we may assume that this
image is finite; thus there is a finite index subgroup G′ of G that is trivial
on W . The action of G′ on V then collapses to the form gf = f + λg(f)
for some linear functional λg ∈ V ∗ (in fact λg annihilates 1 and so comes
from W ∗). Note that λ is then an additive representation of G. If the image
of this representation is infinite, then we are again done by Theorem 2.5.5,
so we may assume that it is finite; thus there is a finite index subgroup G′′

of G′ that is trivial on V . In other words, all Lipschitz harmonic functions
are G′′-invariant, and thus take only finitely many values. But looking at
the maximum such value and using harmonicity (i.e. using the maximum
principle) we conclude that all Lipschitz harmonic functions are constant, a
contradiction.

2.5.2. Building a Lipschitz harmonic function. Now we prove Theo-
rem 2.5.2. We introduce the function

µ :=
1

|S|
∑
s∈S

δs

where δs is the Kronecker delta function. The property of a function f :
G → C being harmonic is then simply that f ∗ µ = f , using the discrete
convolution structure on the group.

To build such a function, we consider the functions

fn :=
1

n

n∑
m=1

µ(m)

where µ(m) := µ ∗ . . . ∗ µ is the convolution of m copies of µ. This sequence
of functions is “asymptotically harmonic” in the sense that

‖fn‖`1(G) = 1
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but

‖fn − fn ∗ µ‖`1(G) = O(1/n)

(we allow implied constants to depend on S).

There are now two cases. The first case is the non-amenable case,
when we have

‖fn − fn ∗ δs‖`1(G) > ε > 0

for some s ∈ S, some ε > 0, and infinitely many n; informally, this means
that the averaged iterated convolutions fn are not getting smoother as n→
∞. By the duality of `1(G) and `∞(G), we see that for each such n we can
find Hn with ‖Hn‖`∞(G) = 1 such that

|Hn ∗ fn(id)−Hn ∗ fn(s)| > ε.

But Young’s inequality, Hn ∗ fn has `∞(G) norm of at most 1, and

‖Hn ∗ fn −Hn ∗ fn ∗ µ‖L∞(G) = O(1/n).

Using the sequential Banach-Alaoglu theorem we may take a subsequence
limit and obtain a non-trivial bounded harmonic function. Since bounded
functions are automatically Lipschitz, and the claim follows.

The second case is the amenable case, when we have

‖fn − fn ∗ δs‖`1(G) → 0

as n→∞ for each s ∈ S. Setting Fn := f
1/2
n , one soon verifies that

‖Fn‖`2(G) = 1

and

‖Fn − Fn ∗ δs‖`2(G) = o(1)

In particular

‖Fn − Fn ∗ µ‖`2(G) = o(1).

From this and the spectral theorem, we see that the positive-definite Lapla-
cian operator ∆ : `2(G)→ `2(G) defined by the formula

∆F := F − F ∗ µ
has non-trivial spectrum at the origin. On the other hand, as G is infinite,
there are no non-trivial harmonic functions in `2(G) (as can be seen from the
maximum principle), and so the spectrum at the origin is not coming from
a zero eigenfunction. From this and the spectral theorem (taking spectral
projections to [0, ε] for small ε), one can find a sequence Gn ∈ `2(G) of
functions such that ∑

g∈G
Gn(g)∆Gn(g) = 1

but

‖∆Gn‖`2(G) → 0
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as n→∞.

A summation by parts gives the Dirichlet energy identity∑
g∈G

Gn(g)∆Gn(g) =
1

2|S|
∑
s∈S
‖Gn −Gn ∗ δs‖2`2(G)

and thus

‖Gn −Gn ∗ δs‖`2(G) = O(1),

and also there exists s0 ∈ S such that

‖Gn −Gn ∗ δs0‖`2(G) � 1

for infinitely many n. By the self-duality of `2(G), we may thus find a
sequence Hn ∈ `2(G) with ‖Hn‖`2(G) = 1 such that

|Hn ∗Gn(id)−Hn ∗Gn(s0)| � 1

for infinitely many n. From Young’s inequality we also see that

‖Hn ∗Gn −Hn ∗Gn ∗ δs‖`∞(G) = O(1)

(so Hn ∗Gn is uniformly Lipschitz) and

‖∆(Hn ∗Gn)‖`∞(G) → 0

as n → ∞, thus Hn ∗ Gn is asymptotically harmonic. Using the Arzelá-
Ascoli theorem to take another subsequence limit (after first subtracting a
constant to normalise Hn ∗ Gn to be zero at the identity, so that Hn ∗ Gn
becomes locally bounded by the uniform Lipschitz property) we obtain the
required non-trivial Lipschitz harmonic function.

Remark 2.5.6. In the case of groups of polynomial growth, one can verify
that one is always in the “amenable” case. In the non-amenable case, the
theory of Poisson boundaries gives a plentiful supply of bounded Lipschitz
harmonic functions (in fact, there is an infinite-dimensional space of such).

2.5.3. Kleiner’s theorem. We now prove Theorem 2.5.3. Our proof will
basically repeat those in Kleiner’s original paper [Kl2010]. For simplicity,
let us assume a stronger condition than polynomial growth, namely bounded
doubling

|BS(2R)| ≤ C|BS(R)|
for some fixed constant C and all R > 0. In general, polynomial growth
does not obviously imply bounded doubling at all scales, but there is a
simple pigeonhole argument that gives bounded doubling on most scales,
and this turns out to be enough to run the argument below. But in order
not to deal with the (minor) technicalities arising from exceptional scales in
which bounded doubling fails, I will assume bounded doubling at all scales.
The full proof in the general case can, of course, be found in Kleiner’s paper
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(which in turn was based upon an earlier argument of Colding and Minicozzi
[CoMi1997]).

Let ε > 0 be a small parameter. The key lemma is

Lemma 2.5.7 (Elliptic regularity). Cover BS(4R) by balls B of radius εR.
Suppose that a harmonic function f : G→ R has mean zero on every such
ball. Then one has

‖f‖`2(BS(R)) � ε‖f‖`2(BS(4R)).

Let’s see how this lemma establishes the theorem. Consider some Lip-
schitz harmonic functions u1, . . . , uD, which we normalise to all vanish at
the identity. Let V be the space spanned by u1, . . . , uD. For each R, the
L2(BS(R)) inner product gives a quadratic form QR on V . Using this qua-
dratic form, we can build a Gram matrix determinant

det(QR(ui, uj))1≤i,j≤D.

From the Lipschitz nature of the harmonic functions, we have a bound of
the form

(2.1) det(QR(ui, uj))1≤i,j≤D � RD

as R→∞. On the other hand, we also have the monotonicity property

det(QR(ui, uj))1≤i,j≤D ≤ det(Q4R(ui, uj))1≤i,j≤D.

Now by bounded doubling, we can cover BS(4R) by Oε(1) balls of radius B.
This creates a codimension Oε(1) subspace of V on which QR is bounded
by O(ε) times Q4R. Using this, we obtain the improved bound

det(QR(ui, uj))1≤i,j≤D ≤ O(ε)D−Oε(1) det(Q2R(ui, uj))1≤i,j≤D.

For ε small enough and D large enough, the rate of growth O(ε)D−Oε(1) is
strictly less than 4−D. Iterating this estimate by doubling R off to infinity,
and comparing against (2.1), we conclude in the limit that

det(QR(ui, uj))1≤i,j≤D = 0

for all R, and so u1, . . . , uD cannot be linearly independent. This implies
that the space of Lipschitz harmonic functions has dimension at most D+1,
and the claim follows.

It remains to prove the lemma. Fix the harmonic function f .

There are two basic ingredients here. The first is the reverse Poincaré
inequality9 ∑

x∈BS(2R)

|∇f(x)|2 � R−2
∑

x∈B(x0,4R)

|f(x)|2

9This inequality is in the general spirit of the philosophy that functions that are harmonic
on a ball, should be smooth that ball.
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where

|∇f(x)|2 :=
∑
s∈S
|f(x)− f(xs)|2.

This claim (which heavily exploits the harmonicity of f) is proven by writing
|f |2 as f(f∗µ), multiplying by a suitable cutoff function adapted to B(x0, 2r)
and equalling one on B(x0, r), and summing by parts; we omit the standard
details.

The second claim is the Poincaré inequality∑
x,y∈B(x0,r)

|f(x)− f(y)|2 � r2|BS(r)|
∑

x∈B(x0,3r)

|∇f(x)|2,

which does not require harmonicity. To prove this claim, observe that the
left-hand side can be bounded by∑

g∈BS(2r)

∑
x∈B(x0,r)

|f(x)− f(xg)|2.

But by expanding each g ∈ BS(2r) as a word of length most 2r and using
the triangle inequality in `2 and Cauchy-Schwarz, we have∑

x∈B(x0,r)

|f(x)− f(xg)|2 � r2
∑

x∈B(x0,3r)

|∇f(x)|2

and the claim follows.

If f has mean zero on B(x0, r), the Poincaré inequality implies that

(2.2)
∑

x∈B(x0,r)

|f(x)|2 � r2
∑

x∈B(x0,3r)

|∇f(x)|2.

To prove the lemma, we first use bounded doubling to refine the family
of balls B = B(xi, εR) so that the triples 3B = B(xi, 3εR) have bounded
overlap. Applying (2.2) for each such ball and summing we obtain the claim.

2.5.4. The compact linear case. Now we prove Theorem 2.5.4. It is a
classical fact that all compact linear groupsH are isomorphic to a subgroup10

of a unitary group U(n); indeed, if one takes the standard inner product on
Cn and averages it by the Haar measure of H, one obtains an inner product
which is H-invariant, and so H can be embedded inside the unitary group
associated to this group. Thus it suffices to prove the claim when H = U(n).

A key observation is that if two unitary elements g, h are close to the
identity, then their commutator [g, h] = ghg−1h−1 is even closer to the

10Indeed, thanks to a theorem of Cartan, H is isomorphic to a Lie subgroup of U(n), i.e. an
analytic submanifold of U(n) that is also a subgroup; but we will not need this fact here.
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identity. Indeed, since multiplication on the left or right by unitary elements
does not affect the operator norm, we have

‖[g, h]− 1‖op = ‖gh− hg‖op
= ‖(g − 1)(h− 1)− (h− 1)(g − 1)‖op

and so by the triangle inequality

(2.3) ‖[g, h]− 1‖op ≤ 2‖g − 1‖op‖h− 1‖op.

We now need to exploit (2.3) to prove Theorem 2.5.4. As a warm-up,
we first prove the following slightly easier classical result:

Theorem 2.5.8 (Jordan’s theorem). Let G be a finite subgroup of U(n).
Then G contains an abelian subgroup of index On(1) (i.e. at most Cn, where
Cn depends only on n).

And indeed, the proof of the two results are very similar. Let us first
prove Jordan’s theorem. We do this by induction on n, the case n = 1 being
trivial. Suppose first that G contains a central element g (i.e. an element
that commutes with all elements of G) which is not a multiple of the identity.
Then, by definition, G is contained in the centraliser Z(g) := {a ∈ U(n) :
ag = ga} of g, which by the spectral theorem is isomorphic to a product
U(n1)× . . .×U(nk) of smaller unitary groups. Projecting G to each of these
factor groups and applying the induction hypothesis, we obtain the claim.

Thus we may assume that G contains no central elements other than
multiples of the identity. Now pick a small ε > 0 (one could take ε = 1/10
in fact) and consider the subgroup G′ of G generated by those elements of
G that are within ε of the identity (in the operator norm). By considering
a maximal ε-net of G we see that G′ has index at most On,ε(1) in G. By
arguing as before, we may assume that G′ has no central elements other
than multiples of the identity.

If G′ consists only of multiples of the identity, then we are done. If not,
take an element g of G′ that is not a multiple of the identity, and which is
as close as possible to the identity (here is where we use that G is finite).
By (2.3), we see that if ε is sufficiently small depending on n, and if h is
one of the generators of G′, then [g, h] lies in G′ and is closer to the identity
than g, and is thus a multiple of the identity. On the other hand, [g, h] has
determinant 1. Given that it is so close to the identity, it must therefore be
the identity (if ε is small enough). In other words, g is central in G′, and
is thus a multiple of the identity. But this contradicts the hypothesis that
there are no central elements other than multiples of the identity, and we
are done.

The proof of Theorem 2.5.4 is analogous. Again, we pick a small ε > 0,
and define G′ as before. If G′ has a central element that is not a multiple of
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the identity, then we can again argue via induction, so suppose that there
are no such elements.

Being finitely generated, it is not difficult to show that G′ can be gen-
erated by a finite set S of generators within distance ε of the identity. Now
pick an element h1 ∈ S which is not a multiple of the identity, and is at
a distance δ1 from the identity for some 0 < δ1 ≤ ε. We look at all the
commutators [g, h1] where g ∈ S. By (2.3), they are all at distance O(εδ1)
from the identity, and have determinant 1. If they are all constant multiples
of the identity, then by arguing as before we see that h1 is central in G′,
a contradiction, so we can find an element h2 := [g1, h1] for some g1 ∈ S
which is a distance δ2 = On(εδ1) from the origin and is not a multiple of the
identity. Continuing this, we can construct h3 := [g2, h2], etc., where each
hn is a distance 0 < δn = O(εδn−1) from the identity, and is a commutator
of hn−1 with a generator.

Because of the lacunary nature of the distances of h1, h2, h3, . . ., we easily
see that the words hi11 . . . h

im
m with 0 ≤ i1, . . . , im ≤ cε−1 are distinct for

some small c > 0. On the other hand, all of these words lie in the ball of
radius O(mε−12m) generated by S. This contradicts the polynomial growth
hypothesis for ε taken small enough and m large enough.

Remark 2.5.9. Theorem 2.5.4 can be deduced as a corollary of Gromov’s
theorem, though we do not do so here as this would be circular. Indeed, it is
not hard to see that the image of a torsion-free nilpotent group in a unitary
group must be abelian.

2.5.5. The case of an infinite abelian quotient. Now we prove Theo-
rem 2.5.5 (which was already observed in Gromov’s original paper [Gr1981],
and also closely related to earlier work of Milnor [Mi1968] and of Wolf
[Wo1968]).

Since G is finitely generated and has polynomial growth of order d,
the finite index subgroup G′ is also finitely generated of growth d. By
hypothesis, there is a non-trivial homomorphism φ : G′ → Z. Using the
Euclidean algorithm, one can move the generators e1, . . . , em of G′ around
so that all but one of them, say e1, . . . , em−1, lie in the kernel ker(φ) of φ; we
thus see that this kernel must then be generated by e1, . . . , em−1 and their
conjugates ekmeie

−k
m by powers of em.

Let Sk be the set of ek
′
meie

−k′
m for 1 ≤ i ≤ m− 1 and |k′| ≤ k, and let Bk

be the words of length at most k generated by elements of Sk. Observe that
if at least the elements in Sk+1 is not contained in Bk · B−1

k , then Bk+1 is
at least twice as big as Bk. Because of polynomial growth, this implies that
Sk+1 ⊂ Bk · B−1

k for some k ≥ 1, which implies that ker(φ) is generated by
Sk.
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Observe that the ball of radius R generated by Sk is at least R/2 times
as large as the ball of radius R/2 generated by e1, . . . , em−1. Since G′ has
growth d, we conclude that ker(φ) has growth at most d − 1, and is thus
virtually nilpotent by hypothesis.

We have just seen that the kernel ker(φ) contains a nilpotent subgroup
N of some finite index M ; it is thus finitely generated. From Lagrange’s the-
orem, we see that the group N ′ generated by the powers gM with g ∈ ker(φ)
is then contained in N and is therefore nilpotent. N ′ is clearly a character-
istic subgroup of ker(φ) (i.e. preserved under all outer automorphisms), and
is thus normal in N . The group N/N ′ is nilpotent and finitely generated
with every element being of order M , and is thus finite; thus N ′ is finite
index in ker(φ). Since it is characteristic, it is in particular invariant under
conjugation by em. If one lets G′′ = Z nem N ′ be the group generated by
N ′ and em, we see that G′′ is a finite index subgroup11 of G. In particular,
it has polynomial growth.

To conclude, we need to show that G′′ is virtually nilpotent. It will
suffice to show that the conjugation action of eam on N ′ acts unipotently on
N ′ for some finite a > 0. We can induct on the step of the nilpotent group
N ′, assuming that the claim has already been proven for the quotient group
N ′/Z(N ′) (where Z(N ′) is the centre of N ′), which has one lower step on
N ′. Thus it suffices to prove unipotence on just the center Z(N ′), which is
a finitely generated abelian group and thus isomorphic to some Zd ×H for
some finite group H. The torsion group H must be preserved by this action.
By Lagrange’s theorem, the action on H becomes trivial after raising em to
a suitable power, so we only need to consider the action on Zd. In this case
the conjugation action can be viewed as a matrix A in SLd(Z). Because
G′′ has polynomial growth, the powers An of A for n ∈ Z can only grow
polynomially; in other words, all the eigenvalues of A have unit magnitude.
On the other hand, these eigenvalues consist of Galois conjugacy classes of
algebraic integers. But it is a classical result of Kronecker that the only
algebraic integers α whose Galois conjugacy classes all have unit magnitude
are the roots of unity12. We conclude that all the eigenvalues of A are roots
of unity, i.e. some power of A is unipotent, and the claim follows.

11Note that as em is not annihilated by φ, it will have infinite torsion even after quotienting
out by N ′.

12Proof: the action of the αn on the ring Z[α] are uniformly bounded in n and must thus
repeat itself due to the finite-dimensional nature of Z[α].



Chapter 3

Analysis

3.1. Orders of magnitude, and tropical geometry

In analysis, it is often the case that one does not need to know the exact
value of the numerical quantities that one is manipulating, but only their
order of magnitude. For instance, if one knows that one number A is on the
order of 106, and another number B is on the order of 103, then this should
be enough (given a sufficiently precise quantification of “on the order of”)
to ensure that B is significantly smaller than A, and can thus be viewed as
a “lower order term”.

Orders of magnitude can be made more precise by working asymptoti-
cally (in which there is a parameter n going off to infinity) or via nonstandard
analysis (in which there is a parameter n that is an unbounded number).
For instance, if A is comparable to n6, and B is comparable to n3 then for
sufficiently large n, B will be smaller than A, and A + B and A will be
asymptotically equal as n goes to infinity (in the sense that the ratio be-
tween A+B and A goes to 1 as n→∞). In particular, A+B will also be
comparable to n6.

One reason for working with orders of magnitude is that it has a simpler
arithmetic than the arithmetic of numbers. For instance, if A is a positive
quantity comparable to na, and B is a positive quantity comparable to nb,
then A+B is comparable to nmax(a,b), and AB is comparable to na+b, and
A/B is comparable to na−b. Thus we see that by passing from numbers
to orders of magnitude, the addition operation has been transformed into
the simpler max operation, while the multiplication and division operations
have been transformed into addition and subtraction operations. To put it
another way, the map from numbers (or more precisely, positive numbers
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depending in an approximately polynomial fashion on n) to orders of mag-
nitude is a homomorphism from the former semiring to the latter, where we
give the orders of magnitude the tropical semiring structure given by the
max-plus algebra.

To phrase this equivalently in the context of nonstandard analysis: if n
is an unbounded positive nonstandard number, then the map x 7→ st(logn x)

is a semiring homomorphism from the semiring nO(1) of positive numbers of
polynomial size, to the real numbers with the max-plus algebra.

If one does not work asymptotically (or with nonstandard analysis),
but works with finite orders of magnitude, then the relationship between
ordinary arithmetic and tropical arithmetic is only approximate rather than
exact. For instance, if A = 106 and B = 103, then A + B ≈ 10max(6,3). If
we replace the base 10 with a larger base, then the error in the exponent
here goes to zero as the base goes to infinity, and we recover the asymptotic
homomorphism.

This illustrates that tropical arithmetic is a degenerate limit of ordinary
arithmetic, which explains why so many algebraic and geometric facts in
ordinary arithmetic and geometry have analogues in tropical arithmetic and
tropical geometry. In particular, the analogue of an algberaic variety is the
spine of the associated amoebae. For instance, consider the plane

{(x, y, z) ∈ R : x+ y + z = 0}

in classical geometry. Then, by the triangle inequality, the largest of the
three magnitudes |x|, |y|, |z| cannot exceed twice the second largest of the
magnitudes. In particular, if |x|, |y|, |z| are comparable with na, nb, nc re-
spectively, then the largest value of a, b, c must equal the second largest
value; or equivalently (in the max-plus algebra), one has

max(a, b) = max(b, c) = max(c, a).

Geometrically, this asserts that (a, b, c) lies in a certain two-dimensional
Y -shaped object (three half-planes glued along a common axis). The de-
composition of the tropical analogue of the plane x + y + z = 0 into these
three half-planes is an important decomposition in analysis; for instance,
in Littlewood-Paley theory, it is known as the Littlewood-Paley trichotomy,
dividing all frequency interactions into high-low, low-high, and high-high
frequency interactions.

One can also use the relationship between tropical geometry and classical
geometry in the reverse direction, viewing various concepts from combina-
torial optimisation as degenerations of ones from algebraic geometry (or
conversely, viewing the latter as relaxations of the former). For instance, a
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metric on n points can be viewed as1 the tropical analogue of an idempotent
real symmetric n × n matrix, because the triangle inequality for metrics is
the tropical analogue of the idempotency relation P 2 = P , after identifying
a metric with its adjacency matrix.

3.2. Descriptive set theory vs. Lebesgue set theory

The set of reals is uncountable, and the set of all subsets of the real line
is even more uncountable, with plenty of room for all sorts of pathological
sets to lurk. There are basically two major ways we use to handle this vast
wilderness. One is to start classifying sets by how “nice” they are (e.g. open,
closed, Gδ, Borel, analytic, Baire class, etc. ); this leads to the subject of
descriptive set theory, which is a subtle subject that can be sensitive to the
choice of axioms of set theory that one wishes to use. The other approach,
which one might dub the “Lebesgue” approach, is to

• restrict attention to Lebesgue measurable sets; and

• ignore anything that happens on a set of measure zero.

This latter approach is very suitable for applications to analysis (in many
applications, particularly those involving integration or averaging, we are
willing to lose control on a small set, and particularly on sets of measure
zero), and vastly cuts down the complexity of the sets one has to deal with;
every Lebesgue measurable set is (locally) an elementary set (a finite union of
intervals) outside of a set of arbitrarily small measure, and is hence (locally)
a pointwise limit of elementary sets outside of a set of zero measure. As
such, most of the delicate hierarchies of classes of sets in descriptive set
theory are not needed in the Lebesgue world.

In descriptive set theory, the concept of (everywhere) pointwise con-
vergence is of basic importance. In the Lebesgue worldview, the concept
of almost everywhere pointwise convergence takes its place. The two look
very similar, but the former is much stronger than the latter in some ways.
Consider for instance the following two classical results:

Lemma 3.2.1. Let f be an everywhere pointwise limit of continuous func-
tions fn on R (i.e. a Baire class 1 function). Then the set of points of dis-
continuity of f is of the first category (i.e. the countable union of nowhere
dense sets). In particular (by the Baire category theorem), the set of points
where f is continuous must be dense.

Lemma 3.2.2. Every Lebesgue measurable function that is finite a.e., is the
almost everywhere limit of continuous functions on R. In particular there

1I learned this example from Berned Sturmfels; see [HeJeKoSt2009] for further discussion.
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exist nowhere continuous functions that are the a.e. limit of continuous
functions.

To prove Lemma 3.2.1, it suffices to prove that for every (rational) a < b,
the set of points x where

lim inf
y→x

f(y) < a < b < lim sup
y→x

f(y)

is nowhere dense. Suppose for contradiction that this set was dense in an
interval I; then f exceeds b on a dense subset of I and dips below a on a dense
subset of I also. But then the sets where f(x) = lim supn→∞ fn(x) > b and
f(x) = lim infn→∞ fn(x) < a are the countable intersection of open dense
subsets in I, and thus must have a point in common by the Baire category
theorem, a contradiction.

Lemma 3.2.2 can be proven by a variety of truncation, regularisation,
and approximation methods (e.g. Lusin’s theorem will work).

Note how Lemma 3.2.1 is powered by the Baire category theorem, which
is a basic tool in descriptive set theory. But because sets of the first cate-
gory can have full measure (since open dense sets can have arbitrarily small
measure), the Baire category theorem becomes useless once one is allowed to
ignore sets of measure zero, which is why Lemma 3.2.1 fails so dramatically
in the Lebesgue world.

The strength of everywhere pointwise convergence, as compared against
almost everywhere pointwise convergence, can also be seen by noting that
there are a variety of useful and general tools by which one can establish
almost everywhere pointwise convergence (e.g. by converging sufficiently fast
in measure or in an Lp sense), but very few ways to establish everywhere
pointwise convergence without also giving the significantly stronger property
of (local) uniform convergence.

3.3. Complex analysis vs. real analysis

The various fields of analysis in mathematics typically take place in a domain
over some field or algebra, which is either one-dimensional or higher dimen-
sional (though one occasionally also sees fractional dimensional domains).
Thus for instance we have real analysis in one dimension or in higher di-
mensions, complex analysis in one variable and several complex variables,
quaternionic or Clifford analysis in one variable or in several variables, and
so forth2.

2In theoretical computer science, one also sees plenty of analysis over finite fields such as

F2, e.g. using hypercontractivity. Analysis over the p-adics Zp or adeles A is also of some use in
number theory. One now also increasingly sees analysis on objects such as graphs, in which there

is no underlying algebra at all, although paths in a graph can be sort of viewed as curves over Z

to some extent.
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Higher dimensional analysis is more difficult than one-dimensional anal-
ysis for many reasons, but one main one is that one-dimensional domains
tend to be 1“flat” or otherwise have an uninteresting geometry (at least when
there are no topological obstructions). For instance, a one-dimensional sim-
ple connected real curve is always (intrinsically) isometric to an interval; and
a one-dimensional simply connected complex domain is always conformal to
a disk (Riemann mapping theorem). Another key advantage of the one-
dimensional setting is that power series are indexed by a single parameter
rather than by multiple parameters, making it easier to manipulate them
by peeling off one monomial at a time.

These are some of the reasons why complex analysis in one variable is
significantly more powerful than real analysis in two variables, despite the
fact that the complex line C has the structure of the real plane R2 after one
forgets the complex structure. But another crucial reason for this is that
in the complex domain, there exist non-trivial closed contours, whereas in
the real domain, all closed contours are degenerate. Thus the fundamental
theorem of calculus in real analysis gets augmented to the significantly more
powerful Cauchy theorem in complex analysis, which is the basis for all
the power of contour integration methods. By exploiting the additional
dimension available in the complex setting, one can avoid being blocked by
singularities or other obstructions, for instance by shifting a contour to go
around a singularity rather than through it.

Another example of this comes from spectral theory. Suppose for in-
stance that one wants to understand the distribution of the (real) eigenval-
ues λ1 < . . . < λn of an n× n Hermitian matrix A. A popular real variable
approach is the moment method, which proceeds by computing the moments

tr(Ak) =
∑
i

λki

for k = 1, 2, 3, . . .. In principle, these moments determine the spectrum; and
they are particularly useful for detecting the edges of the spectrum (the most
extreme eigenvalues λ1 and λn), as this is where the function xk is largest.
However, it takes a nontrivial amount of effort3 to use the moments to control
the bulk of the spectrum (one has to combine many moments together in
order to create a polynomial that is localised in whatever portion of the bulk
one wants to inspect).

3Indeed, some of the most powerful ways to solve the inverse moment problem proceed via
complex-variable methods.
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On the other hand, one can proceed by the complex-variable method of
the Stieltjes transform

tr((A− zI)−1) =
∑
i

1

λi − z
,

where z is a complex number. This transform is well-defined for all z outside
of the spectrum of A, and in particular for all complex z with non-zero
imaginary parts. To understand the distribution of the spectrum near some
value x, it suffices to control the Stieltjes transform for complex numbers
near x, such as x+ iε. The point is that even if x is deep in the bulk of the
spectrum and thus not easily accessed by real-variable techniques, one can
go around the spectrum and get arbitrarily close to x by complex-variable
techniques.

A comparison of the real-variable moment method and the complex-
variable Stieltjes transform method in the case of establishing the semicir-
cular law for Wigner random matrices is given in [Ta2011c].

In view of all this, it is natural to then revisit, say, real analysis in
four variables, and try to recast it as quarternionic analysis in one vari-
able. While this can be done to some extent (and is part of the field of
Clifford analysis), there is however a significant obstruction to transferring
the most powerful components of complex analysis to non-commutative al-
gebras: whereas the product of two differentiable functions over a com-
mutative algebra remains differentiable, the product of two differentiable
functions over a non-commutative algebra is usually not differentiable over
that algebra. So while the space of real differentiable or complex differen-
tiable functions form a commutative algebra, the quarternionic differentiable
functions do not form either a commutative algebra or a non-commutative
algebra, but simply fail to be an algebra altogether.

In real and complex analysis, the algebra property (when combined with
tools such as Neumann series or the Weierstrass approximation theorem,
together with the ability to take limits) leads to many useful ways to ma-
nipulate differentiable functions, and in particular to invert them when they
are non-zero. The loss of the algebra property when the underlying algebra
is non-commutative is thus a serious setback, that has rendered the advan-
tages of Clifford analysis over real analysis in several variables somewhat
modest in nature.
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3.4. Sharp inequalities

Much of “hard” analysis relies extensively on inequalities that control the
magnitude of one expression X by another Y . One can loosely divide anal-
ysis into various regimes, depending on how precise one wants this control
to be. In descending order of precision, one has:

(1) Sharp inequalities. These are exact inequalities such as X ≤ Y
without any unspecified constants or error terms (or X ≤ CY with
an extremely explicit C, typically involving special constants such
as π or e). Typical tools used to establish sharp inequalities in-
clude convexity, calculus of variations (or just plain old calculus),
rearrangement, gradient flows, monotonicity formulae and induc-
tion. On the other hand, one cannot lose any constant factors or
error terms in one’s arguments, no matter how small, unless they
are somehow compensated for by a larger factor with a beneficial
sign. A proof of a sharp inequality X ≤ Y typically also comes au-
tomatically with a good description of the cases in which equality
X = Y occurs.

(2) Almost sharp inequalities. These are inequalities such as X ≤
(1 +O(ε))Y , where ε is small in some sense. So one cannot afford
to lose a constant factor in the main term Y on the right-hand
side, but can accept these sorts of losses in the error term. Typical
tools used here include Taylor expansion in ε, subtracting off the
main term, and various “defect” or “stability” versions of sharp
inequalities.

(3) Quasi-inequalities. These are inequalities such as X ≤ CY ,
where C is an unspecified constant that varies from line to line. One
is now prepared to lose such constants in arguments, which opens
up tools such as the triangle inequality (or more generally, divide-
and-conquer strategies), equivalences of function space norms, use
of bump functions and mollifiers, and asymptotic notation (such as
big-O notation).

(4) Quasi-inequalities with logarithmic losses. These are esti-

mates such as X ≤ C(logC n)Y , or perhaps X ≤ no(1)Y , where n
is some basic entropy parameter (e.g. the ratio between the largest
scale and the smallest scale in the problem, raised to the power
of the ambient dimension); thus one can accept logarithmic losses
in the entropy, or polynomial losses in the dimension. Such losses
are often acceptable when one is ultimately only interested in di-
mensional or exponent information, or if one expects to eventually
gain a power saving n−c that will overcome all logarithmic losses.
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Important techniques that become available in this setting include
dyadic pigeonholing, chaining, and concentration of measure.

(5) Quasi-inequalities with polynomial losses. These are esti-
mates such as X ≤ CnCY that are polynomial in the entropy (or
exponential in the dimension). Such estimates tend to be very easy
to obtain by crude methods, but are sometimes needed as an initial
inequality that one will subsequently amplify to a stronger estimate
with a reduced loss.

(6) Coarse or qualitative inequalities. These are estimates such as
X ≤ CnY , or even X ≤ C(n, Y ), where the dependence of C on n
or Y is unspecified4. Basically, one may as well work with a fixed
n here and not worry any further about dependence of constants
on n. One key tool that can be used in this regime is the use
of various compactness arguments or correspondence principles to
convert this “hard analysis” problem into a “soft analysis” one in
an infinitary setting, so that some sophisticated machinery from
infinitary analysis (e.g. Lie group theory, ergodic theory, measure
theory, etc.) can be applied.

As indicated above, most techniques in hard analysis to prove inequali-
ties tend to sit most naturally in just one of the above categories, and are
more difficult to apply outside of that category5. But there are also some
powerful tricks available to move between categories. In one direction, it is
sometimes possible to prove a coarser inequality (such as a quasi-inequality)
by guessing what a more precise version of that inequality (such as a sharp
inequality) would be, and proving that more precise version using methods
adapted to that category (e.g. induction). Such a proof might not be im-
mediately obvious in the original category. In the other direction, one can
sometimes prove a precise inequality by first proving an ostensibly weaker
inequality in a coarser category, and then amplifying it by some trick (e.g.
a tensor power trick, see [Ta2008, §1.9]).

Coarser inequalities, being logically weaker than more precise inequal-
ities, are generally easier to prove and to generalise. So progress in hard
analysis often proceeds in stages, in which coarse inequalities are estab-
lished first for various problems of interest in an area, which then suggest
the way forward for a subsequent wave of more precise inequalities.

4This is also the regime for classical “for every ε there exists a δ” type analysis.
5For instance, Calderon-Zygmund theory, a key foundation of harmonic analysis, works best

in the quasi-inequality category, but becomes mostly trivial (and thus useless) once one is willing
to tolerate logarithmic losses.
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3.5. Implied constants and asymptotic notation

A basic but incredibly useful notational convention in analysis, which I be-
lieve was first promoted by Hardy, is to use a symbol (usually C) to denote
an unspecified constant whose value varies from one line to the next.

But having a symbol for a constant whose exact value one does not
particularly care about is also useful in algebra as well. For instance, I was
recently performing a lengthy algebraic computation to determine exactly a
certain explicit probability distribution. During this computation, various
normalisation constants kept emerging. But it was not strictly necessary
to keep track of their exact values; instead, one could call them all “C”,
and at the end of the day, one could recover the final combination of all
the normalisation constants by using the fact that probability distributions
have total mass one.

In a similar spirit, one can often use “C” to denote the exponents of
various normalising factors, if one is able to recover these exponents at the
end of the day by such tools as dimensional analysis (or testing against key
examples).

On the other hand, working out the constants C exactly (and making
sure they match what one can obtain a posteriori via the above shortcuts)
is sometimes a beneficial “checksum” to help catch any errors in one’s argu-
ment.

The standard algebraic trick of passing to a quotient space (e.g. passing
to a projective space) can be viewed as a way to systematically ignore things
such as normalisation constants.

The use of the big-O notation O() to hide the implicit constants C
is very useful in analysis. One does have to be a little careful, though,
when combining the big-O notation with an iteration argument, such as an
induction argument. Indeed, consider the following “proof” that all natural
numbers are bounded, i.e. n = O(1) for all n: clearly 0 = O(1), and if
n = O(1) then n+ 1 = O(1) as well, and so the claim follows by induction.

The problem here is that the statement “n = O(1)” is not really a single
statement, but is one of a family of statements “|n| ≤ C”, and one cannot
induct on a family of statements, only on a single statement.

But it is safe to combine induction with O() notation so long as one
makes the constants in the O() notation depend on the iteration stage, as
one can then move the quantification over the implied constant C inside the
iteration, thus avoiding the previous problem. For instance, the previous
induction gives a perfectly valid proof that n = On(1), i.e. n is bounded
in magnitude by a constant Cn depending on n. In this case, of course,
the conclusion is not particularly strong, but there are other situations in
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which one does not mind such dependencies on the implied constants. For
instance, in analysis one is often willing to lose constants that depend on
the dimension d, which allows one to use induction-on-dimension arguments
using O() (or more precisely, Od()) notation.

3.6. Brownian snowflakes

(A side of) the Koch snowflake is a famous example of a self-similar fractal -
a non-smooth curve, consisting of parts which are similar to the whole. It can
be constructed recursively, by starting with a line segment and continually
introducing “kinks”.

Brownian motion (in, say, the plane) is another fractal, but it does not
look self-similar in the way the Koch snowflake does. Nevertheless, one
can think of every Brownian motion trajectory (Bt)t>0 as a (normalised
random gaussian) projection of a self-similar fractal (ct)t>0 in an infinite
dimensional Hilbert space, defined by requiring the increments ct − cs to
have length |t−s|1/2 for every t > s and to be orthogonal when the intervals
[s, t] are disjoint. This fractal can be constructed by a recursive construction
extremely similar to that of the snowflake6.

So, Brownian motions can be thought of as the shadows of an infinite-
dimensional snowflake.

3.7. The Euler-Maclaurin formula, Bernoulli numbers, the
zeta function, and real-variable analytic continuation

The Riemann zeta function ζ(s) is defined in the region Re(s) > 1 by the
absolutely convergent series

(3.1) ζ(s) =
∞∑
n=1

1

ns
= 1 +

1

2s
+

1

3s
+ . . . .

Thus, for instance, it is known that ζ(2) = π2/6, and so

(3.2)
∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+ . . . =

π2

6
.

For Re(s) ≤ 1, the series on the right-hand side of (3.1) is no longer
absolutely convergent, or even conditionally convergent. Nevertheless, the
ζ function can be extended to this region (with a pole at s = 1) by analytic

6It can also be constructed concretely as the indicator functions ct = 1[0,t] in L2(R), but

this makes the curve look deceptively linear.
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continuation. For instance, it can be shown that after analytic continuation,
one has ζ(0) = −1/2, ζ(−1) = −1/12, and ζ(−2) = 0, and more generally

(3.3) ζ(−s) = −Bs+1

s+ 1

for s = 1, 2, . . ., where Bn are the Bernoulli numbers. If one formally applies
(3.1) at these values of s, one obtains the somewhat bizarre formulae

∞∑
n=1

1 = 1 + 1 + 1 + . . .

= −1/2;(3.4)
∞∑
n=1

n = 1 + 2 + 3 + . . .

= −1/12;(3.5)
∞∑
n=1

n2 = 1 + 4 + 9 + . . .

= 0;(3.6)

and more generally

(3.7)

∞∑
n=1

ns = 1 + 2s + 3s + . . . = −Bs+1

s+ 1
.

Clearly, these formulae do not make sense if one stays within the tradi-
tional way to evaluate infinite series, and so it seems that one is forced to
use the somewhat unintuitive analytic continuation interpretation of such
sums to make these formulae rigorous. But as it stands, the formulae look
“wrong” for several reasons. Most obviously, the summands on the left are
all positive, but the right-hand sides can be zero or negative. A little more
subtly, the identities do not appear to be consistent with each other. For
instance, if one adds (3.4) to (3.5), one obtains

(3.8)

∞∑
n=1

(n+ 1) = 2 + 3 + 4 + . . . = −7/12

whereas if one subtracts 1 from (3.5) one obtains instead

(3.9)

∞∑
n=2

n = 0 + 2 + 3 + 4 + . . . = −13/12

which looks inconsistent with (3.8).

However, it is possible to interpret (3.4), (3.5), (3.6) by purely real-
variable methods, without recourse to complex analysis methods such as
analytic continuation, thus giving an “elementary” interpretation of these
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sums that only requires undergraduate calculus; we will later also explain
how this interpretation deals with the apparent inconsistencies pointed out
above.

To see this, let us first consider a convergent sum such as (3.2). The
classical interpretation of this formula is the assertion that the partial sums

N∑
n=1

1

n2
= 1 +

1

4
+

1

9
+ . . .+

1

N2

converge to π2/6 as N →∞, or in other words that

N∑
n=1

1

n2
=
π2

6
+ o(1)

where o(1) denotes a quantity that goes to zero as N → ∞. Actually, by
using the integral test estimate

∞∑
n=N+1

1

n2
≤
∫ ∞
N

dx

x2
=

1

N

we have the sharper result

N∑
n=1

1

n2
=
π2

6
+O(

1

N
).

Thus we can view π2

6 as the leading coefficient of the asymptotic expansion

of the partial sums of
∑∞

n=1 1/n2.

One can then try to inspect the partial sums of the expressions in (3.4),
(3.5), (3.6), but the coefficients bear no obvious relationship to the right-
hand sides:

N∑
n=1

1 = N

N∑
n=1

n =
1

2
N2 +

1

2
N

N∑
n=1

n2 =
1

3
N3 +

1

2
N2 +

1

6
N.

For (3.7), the classical Faulhaber formula (or Bernoulli formula) gives

N∑
n=1

ns =
1

s+ 1

s∑
j=0

(
s+ 1

j

)
BjN

s+1−j

=
1

s+ 1
N s+1 +

1

2
N s +

s

12
N s−1 + . . .+BsN

(3.10)
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for s ≥ 2, which has a vague resemblance to (3.7), but again the connection
is not particularly clear.

The problem here is the discrete nature of the partial sum

N∑
n=1

ns =
∑
n≤N

ns,

which (if N is viewed as a real number) has jump discontinuities at each
positive integer value of N . These discontinuities yield various artefacts
when trying to approximate this sum by a polynomial in N . (These artefacts
also occur in (3.2), but happen in that case to be obscured in the error term
O(1/N); but for the divergent sums (3.4), (3.5), (3.6), (3.7), they are large
enough to cause real trouble.)

However, these issues can be resolved by replacing the abruptly trun-
cated partial sums

∑N
n=1 n

s with smoothed sums
∑∞

n=1 η( nN )ns, where η :
R+ → R is a cutoff function, or more precisely a compactly supported
bounded function that equals 1 at 0. The case when η is the indicator
function 1[0,1] then corresponds to the traditional partial sums, with all the
attendant discretisation artefacts; but if one chooses a smoother cutoff, then
these artefacts begin to disappear (or at least become lower order), and the
true asymptotic expansion becomes more manifest.

Note that smoothing does not affect the asymptotic value of sums that
were already absolutely convergent, thanks to the dominated convergence
theorem. For instance, we have

∞∑
n=1

η(
n

N
)

1

n2
=
π2

6
+ o(1)

whenever η is a cutoff function (since η( nN ) → 1 pointwise as N → ∞ and
is uniformly bounded). If η is equal to 1 on a neighbourhood of the origin,
then the integral test argument then recovers the O(1/N) decay rate:

∞∑
n=1

η(
n

N
)

1

n2
=
π2

6
+O(

1

N
).

However, smoothing can greatly improve the convergence properties of
a divergent sum. The simplest example is Grandi’s series

∞∑
n=1

(−1)n−1 = 1− 1 + 1− . . . .

The partial sums
N∑
n=1

(−1)n−1 =
1

2
+

1

2
(−1)N−1
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oscillate between 1 and 0, and so this series is not conditionally convergent
(and certainly not absolutely convergent). However, if one performs analytic
continuation on the series

∞∑
n=1

(−1)n−1

ns
= 1− 1

2s
+

1

3s
− . . .

and sets s = 0, one obtains a formal value of 1/2 for this series. This value
can also be obtained by smooth summation. Indeed, for any cutoff function
η, we can regroup

∞∑
n=1

(−1)n−1η(
n

N
) =

η(1/N) +
∞∑
m=1

η((2m− 1)/N)− 2η(2m/N) + η((2m+ 1)/N)

2
.

If η is twice continuously differentiable (i.e. η ∈ C2), then from Taylor
expansion we see that the summand has size O(1/N2), and also (from the
compact support of η) is only non-zero when m = O(N). This leads to the
asymptotic

∞∑
n=1

(−1)n−1η(
n

N
) =

1

2
+O(

1

N
)

and so we recover the value of 1/2 as the leading term of the asymptotic
expansion.

Exercise 3.7.1. Show that if η is merely once continuously differentiable
(i.e. η ∈ C1), then we have a similar asymptotic, but with an error term
of o(1) instead of O(1/N). This is an instance of a more general principle
that smoother cutoffs lead to better error terms, though the improvement
sometimes stops after some degree of regularity.

Remark 3.7.1. The most famous instance of smoothed summation is Cesáro
summation, which corresponds to the cutoff function η(x) := (1− x)+. Un-
surprisingly, when Cesáro summation is applied to Grandi’s series, one again
recovers the value of 1/2.

If we now revisit the divergent series (3.4), (3.5), (3.6), (3.7) with smooth
summation in mind, we finally begin to see the origin of the right-hand sides.



3.7. Euler-Maclaurin, Bernoulli, and zeta 93

Indeed, for any fixed smooth cutoff function η, we will shortly show that

∞∑
n=1

η(
n

N
) = −1

2
+ Cη,0N +O(

1

N
)(3.11)

∞∑
n=1

nη(
n

N
) = − 1

12
+ Cη,1N

2 +O(
1

N
)(3.12)

∞∑
n=1

n2η(
n

N
) = Cη,2N

3 +O(
1

N
)(3.13)

(3.14)

and more generally

(3.15)

∞∑
n=1

nsη(
n

N
) = −Bs+1

s+ 1
+ Cη,sN

s+1 +O(
1

N
)

for any fixed s = 1, 2, 3, . . . where Cη,s is the Archimedean factor

(3.16) Cη,s :=

∫ ∞
0

xsη(x) dx

(which is also essentially the Mellin transform of η). Thus we see that the
values (3.4), (3.5), (3.6), (3.7) obtained by analytic continuation are nothing
more than the constant terms of the asymptotic expansion of the smoothed
partial sums. This is not a coincidence; we will explain the equivalence of
these two interpretations of such sums (in the model case when the analytic
continuation has only finitely many poles and does not grow too fast at
infinity) later in this section.

This interpretation clears up the apparent inconsistencies alluded to
earlier. For instance, the sum

∑∞
n=1 n = 1 + 2 + 3 + . . . consists only of

non-negative terms, as does its smoothed partial sums
∑∞

n=1 nη( nN ) (if η
is non-negative). Comparing this with (3.13), we see that this forces the
highest-order term Cη,1N

2 to be non-negative (as indeed it is), but does not
prohibit the lower-order constant term − 1

12 from being negative (which of
course it is).

Similarly, if we add together (3.12) and (3.11) we obtain

(3.17)
∞∑
n=1

(n+ 1)η(
n

N
) = − 7

12
+ Cη,1N

2 + Cη,0N +O(
1

N
)

while if we subtract 1 from (3.12) we obtain

(3.18)

∞∑
n=2

nη(
n

N
) = −13

12
+ Cη,1N

2 +O(
1

N
).
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These two asymptotics are not inconsistent with each other; indeed, if we
shift the index of summation in (3.18), we can write

(3.19)
∞∑
n=2

nη(
n

N
) =

∞∑
n=1

(n+ 1)η(
n+ 1

N
)

and so we now see that the discrepancy between the two sums in (3.8), (3.9)
come from the shifting of the cutoff η( nN ), which is invisible in the formal
expressions in (3.8), (3.9) but become manifestly present in the smoothed
sum formulation.

Exercise 3.7.2. By Taylor expanding η(n+ 1/N) and using (3.11), (3.19)
show that (3.17) and (3.18) are indeed consistent with each other, and in
particular one can deduce the latter from the former.

3.7.1. Smoothed asymptotics. We now prove (3.11), (3.12), (3.13), (3.15).
We will prove the first few asymptotics by ad hoc methods, but then switch
to the systematic method of the Euler-Maclaurin formula to establish the
general case.

For sake of argument we shall assume that the smooth cutoff η : R+ → R
is supported in the interval [0, 1] (the general case is similar, and can also
be deduced from this case by redefining the N parameter). Thus the sum∑∞

n=1 η( nN )xs is now only non-trivial in the range n ≤ N .

To establish (3.11), we shall exploit the trapezoidal rule. For any smooth
function f : R → R, and on an interval [n, n + 1], we see from Taylor
expansion that

f(n+ θ) = f(n) + θf ′(n) +O(‖f‖Ċ2)

for any 0 ≤ θ ≤ 1, ‖f‖Ċ2 := supx∈R |f ′′(x)|. In particular we have

f(n+ 1) = f(n) + f ′(n) +O(‖f‖Ċ2)

and ∫ n+1

n
f(x) dx = f(n) +

1

2
f ′(n) +O(‖f‖Ċ2);

eliminating f ′(n), we conclude that∫ n+1

n
f(x) dx =

1

2
f(n) +

1

2
f(n+ 1) +O(‖f‖Ċ2).

Summing in n, we conclude the trapezoidal rule∫ N

0
f(x) dx =

1

2
f(0) + f(1) + . . .+ f(N − 1) +

1

2
f(N) +O(N‖f‖Ċ2).
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We apply this with f(x) := η( xN ), which has a Ċ2 norm of O(1/N2) from
the chain rule, and conclude that∫ N

0
η(
x

N
) dx =

1

2
+

∞∑
n=1

η(
n

N
) +O(1/N).

But from (3.16) and a change of variables, the left-hand side is just Ncη,0.
This gives (3.11).

The same argument does not quite work with (3.12); one would like to

now set f(x) := xη( xN ), but the Ċ2 norm is now too large (O(1/N) instead

of O(1/N2)). To get around this we have to refine the trapezoidal rule by
performing the more precise Taylor expansion

f(n+ θ) = f(n) + θf ′(n) +
1

2
θ2f ′′(n) +O(‖f‖Ċ3)

where ‖f‖Ċ3 := supx∈R |f ′′′(x)|. Now we have

f(n+ 1) = f(n) + f ′(n) +
1

2
f ′′(n) +O(‖f‖Ċ3)

and ∫ n+1

n
f(x) dx = f(n) +

1

2
f ′(n) +

1

6
f ′′(n) +O(‖f‖Ċ3).

We cannot simultaneously eliminate both f ′(n) and f ′′(n). However, using
the additional Taylor expansion

f ′(n+ 1) = f ′(n) + f ′′(n) +O(‖f‖Ċ3)

one obtains∫ n+1

n
f(x) dx =

1

2
f(n) +

1

2
f(n+ 1) +

1

12
(f ′(n)− f ′(n+ 1)) +O(‖f‖Ċ3)

and thus on summing in n, and assuming that f vanishes to second order
at N , one has (by telescoping series)∫ N

0
f(x) dx =

1

2
f(0) +

1

12
f ′(0) +

N∑
n=1

f(n) +O(N‖f‖Ċ3).

We apply this with f(x) := xη( xN ). After a few applications of the chain rule

and product rule, we see that ‖f‖Ċ3 = O(1/N2); also, f(0) = 0, f ′(0) = 1,

and
∫ N

0 f(x) dx = N2cη,1. This gives (3.12).

The proof of (3.13) is similar. With a fourth order Taylor expansion,
the above arguments give

f(n+ 1) = f(n) + f ′(n) +
1

2
f ′′(n) +

1

6
f ′′′(x) +O(‖f‖Ċ4),∫ n+1

n
f(x) dx = f(n) +

1

2
f ′(n) +

1

6
f ′′(n) +

1

24
f ′′′(n) +O(‖f‖Ċ4)
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and

f ′(n+ 1) = f ′(n) + f ′′(n) +
1

2
f ′′′(n) +O(‖f‖Ċ4).

Here we have a minor miracle (equivalent to the vanishing of the third
Bernoulli number B3) that the f ′′′ term is automatically eliminated when
we eliminate the f ′′ term, yielding∫ n+1

n
f(x) dx =

1

2
f(n) +

1

2
f(n+ 1) +

1

12
(f ′(n)− f ′(n+ 1))

+O(‖f‖Ċ4)

and thus∫ N

0
f(x) dx =

1

2
f(0) +

1

12
f ′(0) +

N∑
n=1

f(n) +O(N‖f‖Ċ4).

With f(x) := x2η( xN ), the left-hand side is N3cη,2, the first two terms on

the right-hand side vanish, and the Ċ4 norm is O(1/N2), giving (3.13).

Now we do the general case (3.15). We define the Bernoulli numbers
B0, B1, . . . recursively by the formula

(3.20)
s−1∑
k=0

(
s

k

)
Bk = s

for all s = 1, 2, . . ., or equivalently

Bs−1 := 1− s− 1

2
Bs−2 −

(s− 1)(s− 2)

3!
Bs−3 − . . .−

1

s
B0.

The first few values of Bs can then be computed:

B0 = 1;B1 = 1/2;B2 = 1/6;B3 = 0;B4 = −1/30; . . . .

From (3.20) we see that

(3.21)

∞∑
k=0

Bk
k!

[P (k)(1)− P (k)(0)] = P ′(1)

for any polynomial P (with P (k) being the k-fold derivative of P ); indeed,
(3.20) is precisely this identity with P (x) := xs, and the general case then
follows by linearity.

As (3.21) holds for all polynomials, it also holds for all formal power
series (if we ignore convergence issues). If we then replace P by the formal
power series

P (x) = etx =

∞∑
k=0

tk
xk

k!
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we conclude the formal power series (in t) identity
∞∑
k=0

Bk
k!
tk(et − 1) = tet

leading to the familiar generating function

(3.22)

∞∑
k=0

Bk
k!
tk =

tet

et − 1

for the Bernoulli numbers.

If we apply (3.21) with P equal to the antiderivative of another polyno-
mial Q, we conclude that∫ 1

0
Q(x) dx+

1

2
(Q(1)−Q(0)) +

∞∑
k=2

Bk
k!

[Q(k−1)(1)−Q(k−1)(0)] = Q(1)

which we rearrange as the identity∫ 1

0
Q(x) dx =

1

2
(Q(0) +Q(1))−

∞∑
k=2

Bk
k!

[Q(k−1)(1)−Q(k−1)(0)]

which can be viewed as a precise version of the trapezoidal rule in the poly-
nomial case. Note that if Q has degree d, the only the summands with
2 ≤ k ≤ d can be non-vanishing.

Now let f be a smooth function. We have a Taylor expansion

f(x) = Q(x) +O(‖f‖Ċs+2)

for 0 ≤ x ≤ 1 and some polynomial Q of degree at most s+ 1; also

f (k−1)(x) = Q(k−1)(x) +O(‖f‖Ċs+2)

for 0 ≤ x ≤ 1 and k ≤ s+ 2. We conclude that∫ 1

0
f(x) dx =

1

2
(f(0) + f(1))

−
s+1∑
k=2

Bk
k!

[f (k−1)(1)− f (k−1)(0)]

+O(‖f‖Ċs+2).

Translating this by an arbitrary integer n (which does not affect the Ċs+2

norm), we obtain

∫ n+1

n
f(x) dx =

1

2
(f(n) + f(n+ 1))−

s+1∑
k=2

Bk
k!

[f (k−1)(n+ 1)− f (k−1)(n)]

+O(‖f‖Ċs+2).

(3.23)
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Summing the telescoping series, and assuming that f vanishes to a suffi-
ciently high order at N , we conclude the Euler-Maclaurin formula

(3.24)

∫ N

0
f(x) dx =

1

2
f(0) +

N∑
n=1

f(n) +

s+1∑
k=2

Bk
k!
f (k−1)(0) +O(N‖f‖Ċs+2).

We apply this with f(x) := xsη( xN ). The left-hand side is cη,sN
s. All the

terms in the sum vanish except for the k = s+1 term, which is Bs+1

s+1 . Finally,

from many applications of the product rule and chain rule (or by viewing
f(x) = N sg(x/N) where g is the smooth function g(x) := xsη(x)) we see
that ‖f‖Ċs+2 = O(1/N2), and the claim (3.15) follows.

Remark 3.7.2. By using a higher regularity norm than the Ċs+2 norm, we
see that the error term O(1/N) can in fact be improved to O(1/NB) for any
fixed B > 0, if η is sufficiently smooth.

Remark 3.7.3. One can formally derive the (untruncated) Euler-Maclaurin
formula
(3.25)∫ N

0
f(x) dx =

1

2
(f(0)− f(N)) +

N∑
n=1

f(n) +
∞∑
k=2

Bk
k!

(f (k−1)(0)− f (k−1)(N))

(which, after truncating and assuming that f vanishes to high order at N ,
formally gives the main terms of (3.24)) as follows. If we let D := d

dx be the
differentiation operator, then the Taylor expansion formula

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + . . .

becomes

f(x+ h) = (1 + hD +
h2

2!
D2 + . . .)f(x)

= ehDf(x)

(thus translation is the exponentiation of differentiation). In particular,
f(x) = exDf(0), and so (3.25) is formally∫ N

0
exD dx =

1

2
(1− eND) +

N∑
n=1

enD +

∞∑
k=2

Bk
k!
Dk−1(1− eND),

where we use the vanishing of f at N to justify the O(eND) error term.

Formally, the integral on the left-hand side is eND−1
D , while the geometric

series
∑N

n=1 e
nD is e(N+1)D−eD

eD−1
. Meanwhile, from (3.22) one formally has

1

D
+

1

2
+

∞∑
k=2

Bk
k!
Dk−1 =

eD

eD − 1
,
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and the claim then follows (at a formal level) by some routine algebraic
manipulation.

Exercise 3.7.3. Use (3.23) to derive Faulhaber’s formula (3.10). Note how
the presence of boundary terms at N cause the right-hand side of (3.10) to
be quite different from the right-hand side of (3.15); thus we see how non-
smooth partial summation creates artefacts that can completely obscure the
smoothed asymptotics.

3.7.2. Connection with analytic continuation. Now we connect the
interpretation of divergent series as the constant term of smoothed partial
sum asymptotics, with the more traditional interpretation via analytic con-
tinuation. For sake of concreteness we shall just discuss the situation with
the Riemann zeta function series

∑∞
n=1

1
ns , though the connection extends

to far more general series than just this one.

In the previous section, we have computed asymptotics for the partial
sums

∞∑
n=1

1

ns
η(
n

N
)

when s is a negative integer. A key point (which was somewhat glossed over
in the above analysis) was that the function x−sη(x) was smooth, even at

the origin; this was implicitly used to bound various Ċk norms in the error
terms.

Now suppose that s is a complex number with Re(s) < 1, which is not
necessarily a negative integer. Then x−sη(x) becomes singular at the origin,
and the above asymptotic analysis is not directly applicable. However, if
one instead considers the telescoped partial sum

∞∑
n=1

1

ns
η(
n

N
)−

∞∑
n=1

1

ns
η(2n/N),

with η equal to 1 near the origin, then by applying (3.24) to the function
f(x) := x−sη( xN )− x−sη(2x/N) (which vanishes near the origin, and is now
smooth everywhere), we soon obtain the asymptotic

(3.26)
∞∑
n=1

1

ns
η(
n

N
)−

∞∑
n=1

1

ns
η(2n/N) = cη,−s(N

1−s− (N/2)1−s) +O(1/N).

Applying this with N equal to a power of two and summing the telescoping
series, one concludes that

(3.27)
∞∑
n=1

1

ns
η(
n

N
) = ζ(s) + cη,−sN

1−s +O(1/N)
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for some complex number ζ(s) which is basically the sum of the various
O(1/N) terms appearing in (3.26). By modifying the above arguments, it
is not difficult to extend this asymptotic to other numbers than powers of
two, and to show that ζ(s) is independent of the choice of cutoff η.

From (3.27) we have

ζ(s) = lim
N→∞

∞∑
n=1

1

ns
η(
n

N
)− cη,−sN1−s,

which can be viewed as a definition of ζ in the region Re(s) < 1. For
instance, from (3.15), we have now proven (3.3) with this definition of ζ(s).
However it is difficult to compute ζ(s) exactly for most other values of s.

For each fixed N , it is not hard to see that the expression 1
ns η( nN ) −

cη,−sN
1−s is complex analytic in s. Also, by a closer inspection of the

error terms in the Euler-Maclaurin formula analysis, it is not difficult to
show that for s in any compact region of {s ∈ C : Re(s) < 1}, these
expressions converge uniformly as N → ∞. Applying Morera’s theorem,
we conclude that our definition of ζ(s) is complex analytic in the region
{s ∈ C : Re s < 1}.

We still have to connect this definition with the traditional definition
(3.1) of the zeta function on the other half of the complex plane. To do this,
we observe that

cη,−sN
1−s =

∫ N

0
x−sη(

x

N
) dx =

∫ N

1
x−sη(

x

N
) dx− 1

s− 1

for N large enough. Thus we have

ζ(s) =
1

s− 1
+ lim
N→∞

∞∑
n=1

1

ns
η(
n

N
)−

∫ N

1
x−sη(

x

N
) dx

for Re s < 1. The point of doing this is that this definition also makes sense in
the region Re(s) > 1 (due to the absolute convergence of the sum

∑∞
n=1

1
ns

and integral
∫∞

1 x−sdx. By using the trapezoidal rule, one also sees that
this definition makes sense in the region Re(s) > 0, with locally uniform
convergence there also. So we in fact have a globally complex analytic
definition of ζ(s) − 1

s−1 , and thus a meromorphic definition of ζ(s) on the
complex plane. Note also that this definition gives the asymptotic

(3.28) ζ(s) =
1

s− 1
+ γ +O(|s− 1|)

near s = 1, where γ = 0.577 . . . is Euler’s constant.

We have thus seen that asymptotics on smoothed partial sums of 1
ns

gives rise to the familiar meromorphic properties of the Riemann zeta func-
tion ζ(s). It turns out that by combining the tools of Fourier analysis and
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complex analysis, one can reverse this procedure and deduce the asymptotics
of 1

ns from the meromorphic properties of the zeta function.

Let’s see how. Fix a complex number s with Re(s) < 1, and a smooth
cutoff function η : R+ → R which equals one near the origin, and consider
the expression

(3.29)
∞∑
n=1

1

ns
η(
n

N
)

where N is a large number. We let A > 0 be a large number, and rewrite
this as

NA
∞∑
n=1

1

ns+A
fA(log(n/N))

where

fA(x) := eAxη(ex).

The function fA is in the Schwartz class. By the Fourier inversion formula,
it has a Fourier representation

fA(x) =

∫
R
f̂A(t)e−ixt dt

where

f̂A(x) :=
1

2π

∫
R
fA(x)eixt dx

and so (3.29) can be rewritten as

NA
∞∑
n=1

1

ns+A

∫
R
f̂A(t)(n/N)−it dt.

The function f̂A is also Schwartz. If A is large enough, we may then inter-
change the integral and sum and use (3.1) to rewrite (3.29) as∫

R
f̂A(t)NA+itζ(s+A+ it) dt.

Now we have

f̂A(t) =
1

2π

∫
R
e(A+it)xη(ex) dx;

integrating by parts (which is justified when A is large enough) we have

f̂A(t) = − 1

2π(A+ it)
F (A+ it)

where

F (A+ it) =

∫
R
e(A+it+1)xη′(ex) dx =

∫ ∞
0

yA+itη′(y) dy.
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We can thus write (3.29) as a contour integral

−1

2πi

∫ s+A+i∞

s+A−i∞
ζ(z)

N z−sF (z − s)
z − s

dz.

Note that η′ is compactly supported away from zero, which makes F (A +
it) an entire function of A + it, which is uniformly bounded whenever A
is bounded. Furthermore, from repeated integration by parts we see that
F (A+ it) is rapidly decreasing as t→∞, uniformly for A in a compact set.
Meanwhile, standard estimates show that ζ(σ+it) is of polynomial growth in

t for σ in a compact set. Finally, the meromorphic function ζ(z)N
z−sF (z−s)
z−s

has a simple pole at z = 1 (with residue N1−sF (1−s)
1−s ) and at z − s (with

residue ζ(s)F (0)). Applying the residue theorem, we can write (3.29) as

−1

2πi

∫ s−B+i∞

s−B−i∞
ζ(z)

N z−sF (z − s)
z − s

dz − N1−sF (1− s)
1− s

− ζ(s)F (0)

for any B > 0. Using the various bounds on ζ and F , we see that the
integral is O(N−B). From integration by parts we have F (0) = −1 and

F (1− s) = −(1− s)
∫ ∞

0
y−sη(y) dy = −(1− s)cη,−s

and thus we have
∞∑
n=1

1

ns
η(
n

N
) = ζ(s) + cη,−sN

1−s +O(N−B)

for any B > 0, which is (3.15) (with the refined error term indicated in
Remark 3.7.2).

The above argument reveals that the simple pole of ζ(s) at s = 1 is
directly connected to the cη,−sN

1−s term in the asymptotics of the smoothed
partial sums. More generally, if a Dirichlet series

D(s) =

∞∑
n=1

an
ns

has a meromorphic continuation to the entire complex plane, and does not
grow too fast at infinity, then one (heuristically at least) has the asymptotic

∞∑
n=1

an
ns
η(
n

N
) = D(s) +

∑
ρ

cη,ρ−s−1rρN
ρ−s + . . .

where ρ ranges over the poles of D, and rρ are the residues at those poles.
For instance, one has the famous explicit formula

∞∑
n=1

Λ(n)η(
n

N
) = cη,0N −

∑
ρ

cη,ρ−1N
ρ + . . .
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where Λ is the von Mangoldt function, ρ are the non-trivial zeroes of the
Riemann zeta function (counting multiplicity, if any), and . . . is an error term
(basically arising from the trivial zeroes of zeta); this ultimately reflects the
fact that the Dirichlet series

∞∑
n=1

Λ(n)

ns
= −ζ

′(s)

ζ(s)

has a simple pole at s = 1 (with residue +1) and simple poles at every zero
of the zeta function with residue −1 (weighted again by multiplicity, though
it is not believed that multiple zeroes actually exist).

The link between poles of the zeta function (and its relatives) and asymp-
totics of (smoothed) partial sums of arithmetical functions can be used to
compare elementary methods in analytic number theory with complex meth-
ods. Roughly speaking, elementary methods are based on leading term
asymptotics of partial sums of arithmetical functions, and are mostly based
on exploiting the simple pole of ζ at s = 1 (and the lack of a simple zero of
Dirichlet L-functions at s = 1); in contrast, complex methods also take full
advantage of the zeroes of ζ and Dirichlet L-functions (or the lack thereof)
in the entire complex plane, as well as the functional equation (which, in
terms of smoothed partial sums, manifests itself through the Poisson sum-
mation formula). Indeed, using the above correspondences it is not hard to
see that the prime number theorem (for instance) is equivalent to the lack
of zeroes of the Riemann zeta function on the line Re(s) = 1.

With this dictionary between elementary methods and complex meth-
ods, the Dirichlet hyperbola method in elementary analytic number theory
corresponds to analysing the behaviour of poles and residues when multiply-
ing together two Dirichlet series. For instance, by using the formula (3.11)
and the hyperbola method, together with the asymptotic

∞∑
n=1

1

n
η(
n

N
) =

∫ ∞
1

η(
x

N
)
dx

x
+ γ +O(1/N)

which can be obtained from the trapezoidal rule and the definition of γ, one
can obtain the asymptotic

∞∑
n=1

τ(n)η(
n

N
) =

∫ ∞
1

log xη(
x

N
) dx+ 2γcη,0N +O(

√
N)

where τ(n) :=
∑

d|n 1 is the divisor function (and in fact one can improve

the O(
√
N) bound substantially by being more careful); this corresponds to

the fact that the Dirichlet series
∞∑
n=1

τ(n)

ns
= ζ(s)2
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has a double pole at s = 1 with expansion

ζ(s)2 =
1

(s− 1)2
+ 2γ

1

s− 1
+O(1)

and no other poles, which of course follows by multiplying (3.28) with itself.

Remark 3.7.4. In the literature, elementary methods in analytic number
theorem often use sharply truncated sums rather than smoothed sums. How-
ever, as indicated earlier, the error terms tend to be slightly better when
working with smoothed sums (although not much gain is obtained in this
manner when dealing with sums of functions that are sensitive to the primes,
such as Λ, as the terms arising from the zeroes of the zeta function tend to
dominate any saving in this regard).

3.8. Finitary consequences of the invariant subspace problem

One of the most notorious open problems in functional analysis is the in-
variant subspace problem for Hilbert spaces, which I will state here as a
conjecture:

Conjecture 3.8.1 (Invariant Subspace Problem, ISP0). Let H be an infi-
nite dimensional complex Hilbert space, and let T : H → H be a bounded
linear operator. Then H contains a proper closed invariant subspace V (thus
TV ⊂ V ).

As stated this conjecture is quite infinitary in nature. Just for fun,
I set myself the task of trying to find an equivalent reformulation of this
conjecture that only involved finite-dimensional spaces and operators. This
turned out to be somewhat difficult, but not entirely impossible, if one
adopts a sufficiently generous version of “finitary” (cf. [Ta2008, §1.3]).
Unfortunately, the finitary formulation that I arrived at ended up being
rather complicated (in particular, involving the concept of a “barrier”), and
did not obviously suggest a path to resolving the conjecture; but it did at
least provide some simpler finitary consequences of the conjecture which
might be worth focusing on as subproblems.

I should point out that the arguments here are quite “soft” in nature
and are not really addressing the heart of the invariant subspace problem;
but I think it is still of interest to observe that this problem is not purely an
infinitary problem, and does have some non-trivial finitary consequences.

3.8.1. Initial reductions. The first reduction is to get rid of the closed
invariant subspace V , as this will be the most difficult object to finitise. We
rephrase ISP0 as
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Conjecture 3.8.2 (Invariant Subspace Problem, ISP1). Let H be an infi-
nite dimensional complex Hilbert space, and let T : H → H be a bounded lin-
ear operator. Then there exist unit vectors v, w ∈ H such that 〈Tnv, w〉 = 0
for all natural numbers n ∈ N.

Indeed, to see that ISP1 implies ISP0, we simply take V to be the closed
invariant subspace generated by the orbit v, Tv, T 2v, . . ., which is proper
since it is orthogonal to w. To see that ISP0 implies ISP1, we let v be an
arbitrary unit vector in the invariant subspace V , and w be an arbitrary
unit vector in the orthogonal complement V ⊥.

The claim is obvious if H is not separable (just let v be arbitrary, and
w to be a normal vector to the separable space spanned by v, Tv, T 2v, . . .),
so we may normalise H to be `2(N). We may also normalise T to be a
contraction (thus ‖T‖op ≤ 1), and let (aij)i,j≥1 be the coefficients of T .

The next step is to restrict T to a compact space of operators. Define a
growth function to be a monotone increasing function F : N → N. Given
any growth function F , we say that a linear contraction T : `2(N)→ `2(N)
with coefficients (aij)i,j≥1 is F -tight if one has the bound

(3.30) sup
1≤i≤N

∑
j≥F (N)

|aij |2 ≤
1

N

and

(3.31) sup
1≤j≤N

∑
i≥F (N)

|aij |2 ≤
1

N
.

For instance, if the matrix (aij)i,j≥1 is band-limited to the region |j −
i| ≤ 10, it is F -tight with F (N) := N + 11. If it is limited to the region
i/2 ≤ j ≤ 2i, then it is F -tight with F (N) := 2N + 1. So one can view
F -tightness as a weak version of the band-limited property.

The significance of this concept lies in the following lemma:

Lemma 3.8.3 (Sequential compactness). (i) Every contraction T : `2(N)→
`2(N) is F -tight with respect to at least one growth function F .

(ii) If F is a growth function and T1, T2, . . . is a sequence of F -tight
contractions, then there exists a subsequence Tnk which converges
in the strong operator topology to an F -tight contraction T . Fur-
thermore, the adjoints T ∗nk converge in the strong operator topology
to T ∗.

Proof. To prove (i), observe that if T is a contraction and N ≥ 1, then

sup
1≤i≤N

∞∑
j=1

|aij |2 ≤ 1
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and

sup
1≤j≤N

∞∑
i=1

|aij |2 ≤ 1

and hence by the monotone convergence theorem we can find F (N) such that
(3.30), (3.31). By increasing F (N) as necessary one can make F monotone.

To prove (ii), we apply the usual Arzelá-Ascoli diagonalisation argument
to extract a subsequence Tnk = (ai,j,nk)i,j≥1 that converges componentwise
(i.e. in the weak operator topology) to a limit T = (ai,j)i,j≥1. From Fatou’s
lemma we see that T is an F -tight contraction. From the tightness one
can upgrade the weak operator topology convergence to strong operator
topology convergence (i.e.

lim
k→∞

∞∑
j=1

|ai,j,nk − ai,j |
2 = 0

for all i) by standard arguments, and similarly for the adjoints. �

We will similarly need a way to compactify the unit vectors v, w. If F
is a growth function and 0 < N1 < N2 < N3 < . . . are natural numbers, we
say that a unit vector v = (vi)

∞
i=1 is F,N1, N2, . . .-tight if one has

(3.32)
∑
i≥Nk

|vi|2 ≤
1

F (Nk−1)

for all k ≥ 1, with the convention that N0 = 0. Similarly, we say that v
is F,N1, . . . , NK-tight if one has (3.32) for all 1 ≤ k ≤ K. One has the
following variant of Lemma 3.8.3:

Lemma 3.8.4 (Sequential compactness). Let F be a growth function.

(i) Every unit vector v is F,N1, N2, . . .-tight with respect to at least one
increasing sequence 0 < N1 < N2 < . . .. In fact any finite number
of unit vectors v1, . . . , vm can be made F,N1, N2, . . .-tight with the
same increasing sequence 0 < N1 < N2 < . . ..

(ii) If 0 < N1 < N2 < . . ., and for each k ≥ 1, vk is a F,N1, . . . , Nk-
tight unit vector, then there exists a subsequence vnl of vk that con-
verges strongly to an F,N1, N2, . . .-tight unit vector v.

The proof of this lemma is routine and is omitted.

In view of these two lemmas, ISP0 or ISP1 is equivalent to

Conjecture 3.8.5 (Invariant Subspace Problem, ISP2). Let F be a growth
function, and let T = (aij)i,j≥1 be an F -tight contraction. Then there exist
a sequence 0 < N1 < N2 < . . . and a pair of F,N1, N2, . . .-tight unit vectors
v, w ∈ `2(N) such that 〈Tnv, w〉 = 0 for all natural numbers n ∈ N.
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The compactness given by the F -tightness and F,N1, N2, . . . will be use-
ful for finitising later.

3.8.2. Finitising. Now we need a more complicated object.

Definition 3.8.6. A barrier is a family T of finite tuples (N1, . . . , Nm) of
increasing natural numbers 0 < N1 < . . . < Nm, such that

(i) Every infinite sequence N1 < N2 < . . . of natural numbers has at
least one initial segment (N1, . . . , Nm) in T ; and

(ii) If (N1, . . . , Nm) is a sequence in T , then no initial segment (N1, . . . , Nm′)
with m′ < m lies in T .

Examples of barriers include

(1) The family of all tuples (N1, . . . , Nm) of increasing natural numbers
with m = 10;

(2) The family of all tuples (N1, . . . , Nm) of increasing natural numbers
with m = N1 + 1;

(3) The family of all tuples (N1, . . . , Nm) of increasing natural numbers
with m = NN1+1 + 1.

We now claim that ISP2 is equivalent to the following finitary statement.
Let `2(N) ≡ CN denote the `2 space on {1, . . . , N}.

Conjecture 3.8.7 (Finitary invariant subspace problem, FISP0). Let F be
a growth function, and let T be a barrier. Then there exists a natural number
N∗ such that for every F -tight contraction T : `2(F (N∗)) → `2(F (N∗)),
there exists a tuple (N1, . . . , Nm) in T with 0 < N1 < . . . < Nm < N∗, and
F,N1, . . . , Nm-tight unit vectors v, w ∈ `2(F (N∗)), such that |〈Tnv, w〉| ≤

1
F (Nm) for all 0 ≤ n ≤ F (Nm).

We now show that ISP2 and FISP0 are equivalent.

Proof of ISP2 assuming FISP0. Let F be a growth function, and let
T be an F -tight contraction. Let T ′ denote the set of all tuples 0 < N1 <
. . . < Nm with m > 1 such that there does not exist F,N1, . . . , Nm-tight
unit vectors v, w ∈ `2(N) such that |〈Tnv, w〉| ≤ 2

m holds for all 0 ≤ n ≤ m.
Let T be those elements of T ′ that contain no proper initial segment in T ′.

Suppose first that T is not a barrier. Then there exists an infinite
sequence 0 < N1 < N2 < . . . such that (N1, . . . , Nm) 6∈ T for all m, and
thus (N1, . . . , Nm) 6∈ T ′ for all m. In other words, for each m there exists
F,N1, . . . , Nm-tight unit vectors vm, wm ∈ `2(N) such that |〈Tnvm, wm〉| ≤
2
m for all 0 ≤ n ≤ m. By Lemma 3.8.4, we can find a subsequence vmj , wmj
that converge strongly to F,N1, N2, . . .-tight unit vectors v, w. We conclude
that 〈Tnv, w〉 = 0 for all n ≥ 0, and ISP2 follows.
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Now suppose instead that T is a barrier. Let F ′ be a growth function
larger than F to be chosen later. Then the F -tight contraction T is also
F ′-tight, as is the restriction T |N : `2(N) → `2(N) of T to any finite sub-
space. Using FISP0, we can thus find 0 < N1 < . . . < Nm < N∗ with
(N1, . . . , Nm) ∈ T and F ′, N1, . . . , Nm-tight unit vectors v, w ∈ `2(F ′(N∗))
such that

|〈(T |F ′(Nm))
nv, w〉| ≤ 1

F ′(Nm)

for all 0 ≤ n ≤ F ′(Nm), and in particular for all 0 ≤ n ≤ m. Note that
v, w are almost in `2(Nm), up to an error of 1/F ′(Nm−1). From this and
the F -tightness of the contraction T , we see (if F ′ is sufficiently rapid) that
(T |F ′(Nm))

nv and Tnv differ by at most 1/m for 0 ≤ n ≤ m. We conclude
that

|〈Tnv, w〉| ≤ 2

m
,

and so (N1, . . . , Nm) 6∈ T , a contradiction. This yields the proof of ISP2
assuming FISP0.

Proof of FISP0 assuming ISP2. Suppose that FISP0 fails. Then
there exists a growth function F and a barrier T such that, for every N∗,
there exists an F -tight contraction TN∗ : `2(F (N∗))→ `2(F (N∗)) such that
there does not exist any tuples (N1, . . . , Nm) in T with 0 < N1 < . . . <
Nm < N∗, and F,N1, . . . , Nm-tight unit vectors v, w ∈ `2(F (N∗)), such that
|〈Tnv, w〉| ≤ 1

F (Nm) for all 0 ≤ n ≤ F (Nm).

We extend each TN∗ by zero to an operator on `2(N), which is still a
F -tight contraction. Using Lemma 3.8.3, one can find a sequence N∗,k going
to infinity such that TN∗,k converges in the strong (and dual strong) operator

topologies to an F -tight contraction T . Let F ′ be a growth function larger
than F to be chosen later. Applying ISP2, there exists an infinite sequence
0 < N1 < N2 < . . . and F ′, N1, N2, . . .-tight unit vectors v, w ∈ `2(N) such
that 〈Tnv, w〉 = 0 for all n ≥ 0.

As T is a barrier, there exists a finite initial segment (N1, . . . , Nm) of the
above sequence that lies in T . For k sufficiently large, we have N∗,k ≥ Nm,
and also we see from the strong operator norm convergence of TN∗,k to T
(and thus TnN∗,k to Tn for any n, as all operators are uniformly bounded)

that

|〈TnN∗,kv, w〉| ≤
1

F ′(Nm)

for all 0 ≤ n ≤ F (Nm).

Now we restrict v, w to `2(F (N∗,k)), and then renormalise to create unit
vectors v′, w′ ∈ `2(F (N∗,k)). For k large enough, we have

‖v − v′‖, ‖w − w′‖ ≤ 1/F ′(Nm)
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and we deduce (for F ′ large enough) that v′, w′ are F,N1, N2, . . . , Nm-tight
and |〈Tnv, w〉| ≤ 1

F (Nm) for all 0 ≤ n ≤ F (Nm). But this contradicts the

construction of the TN∗ , and the claim follows.

3.8.3. A special case. The simplest example of a barrier is the family of
1-tuples (N), and one of the simplest examples of an F -tight contraction is
a contraction that is 1-band-limited, i.e. the coefficients aij vanish unless
|i− j| ≤ 1. We thus obtain

Conjecture 3.8.8 (Finitary invariant subspace problem, special case, FISP1).
Let F be a growth function and ε > 0. Then there exists a natural number N∗
such that for every 1-band-limited contraction T : `2(F (N∗)) → `2(F (N∗)),
there exists 0 < N < N∗ and unit vectors v, w ∈ `2(F (N∗)) with∑

j≥N
|vj |2,

∑
j≥N
|wj |2 ≤ ε2

(i.e. v, w are ε-close to `2(N)) such that |〈Tnv, w〉| ≤ 1
F (N) for all 0 ≤ n ≤

F (N).

This is perhaps the simplest case of ISP that I do not see how to resolve7.
Here is a slightly weaker version that I still cannot resolve:

Conjecture 3.8.9 (Finitary invariant subspace problem, special case, FISP2).
Let F be a growth function, let ε > 0, and let T : `2(N)→ `2(N) be a 1-band-
limited contraction. Then there exists N > 0 and unit vectors v, w ∈ `2(N)
such that ∑

j≥N
|vj |2,

∑
j≥N
|wj |2 ≤ ε2

(i.e. v, w are ε-close to `2(N)) such that |〈Tnv, w〉| ≤ 1
F (N) for all 0 ≤ n ≤

F (N).

This claim is implied by ISP but is significantly weaker than it. Infor-
mally, it is saying that one can find two reasonably localised vectors v, w,
such that the orbit of v is highly orthogonal to w for a very long period of
time, much longer than the degree to which v, w are localised.

3.8.4. Notes. I am indebted to Henry Towsner for many discussions on
this topic, and to the MathOverflow community for describing the concept
of a barrier.

7Note that the finite-dimensional operator T : `2(F (N∗)) → `2(F (N∗)) will have plenty of

(generalised) eigenvectors, but there is no particular reason why any of them are “tight” in the
sense that they are ε-close to `2(N).
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3.9. The Guth-Katz result on the Erdős distance problem

Combinatorial incidence geometry is the study of the possible combinatorial
configurations between geometric objects such as lines and circles. One of
the basic open problems in the subject has been the Erdős distance problem
[Er1946]:

Problem 3.9.1 (Erdős distance problem). LetN be a large natural number.
What is the least number #{|xi−xj | : 1 ≤ i < j ≤ N} of distances that are
determined by N points x1, . . . , xN in the plane?

Erdos called this least number g(N). For instance, one can check that
g(3) = 1 and g(4) = 2, although the precise computation of g rapidly be-
comes more difficult after this. By considing N points in arithmetic pro-
gression, we see that g(N) ≤ N − 1. By considering the slightly more

sophisticated example of a
√
N ×

√
N lattice grid (assuming that N is a

square number for simplicity), and using some analytic number theory, one
can obtain the slightly better asymptotic bound g(N) = O(N/

√
logN).

On the other hand, lower bounds are more difficult to obtain. As ob-
served by Erdos, an easy argument, ultimately based on the incidence geom-
etry fact that any two circles intersect in at most two points, gives the lower
bound g(N)� N1/2. The exponent 1/2 has been slowly increasing over the
years by a series of increasingly intricate arguments combining incidence ge-
ometry facts with other known results in combinatorial incidence geometry
(most notably the Szemerédi-Trotter theorem [SzTr1873]) and also some
tools from additive combinatorics; however, these methods seemed to fall
quite short of getting to the optimal exponent of 1. Indeed, until last year,
the best lower bound known was approximately N0.8641, due to Katz and
Tardos [KaTa2004].

Very recently, though, Guth and Katz [GuKa2010b] have obtained a
near-optimal result:

Theorem 3.9.2. One has g(N)� N/ logN .

The proof neatly combines together several powerful and modern tools in
a new way: a recent geometric reformulation of the problem due to Elekes
and Sharir [ElSh2010]; the polynomial method as used recently by Dvir
[Dv2009], Guth [Gu2010], and Guth-Katz [GuKa2010] on related inci-
dence geometry problems (discussed in [Ta2009b, §1.1, 1.7]); and the some-
what older method of cell decomposition (discussed in [Ta2010b, §1.4]). A
key new insight is that the polynomial method (and more specifically, the
polynomial Ham Sandwich theorem) can be used to efficiently create cells.

In this post, I thought I would sketch some of the key ideas used in the
proof, though I will not give the full argument here (the paper [GuKa2010b]
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itself is largely self-contained, well motivated, and of only moderate length).
In particular I will not go through all the various cases of configuration types
that one has to deal with in the full argument, but only some illustrative
special cases.

To simplify the exposition, I will repeatedly rely on “pigeonholing cheats”.
A typical such cheat: if I have n objects (e.g. n points or n lines), each of
which could be of one of two types, I will assume8 that either all n of the
objects are of the first type, or all n of the objects are of the second type.
A related such cheat9: if one has n objects A1, . . . , An (again, think of n
points or n circles), and to each object Ai one can associate some natural
number ki (e.g. some sort of “multiplicity” for Ai) that is of “polynomial

size” (of size O(NO(1))), then I will assume in fact that all the ki are in a
fixed dyadic range [k, 2k] for some k. Using the notation X ∼ Y to denote
the assertion that C−1Y ≤ X ≤ CY for an absolute constant C, we thus
have ki ∼ k for all i, thus ki is morally constant.

I will also use asymptotic notation rather loosely, to avoid cluttering
the exposition with a certain amount of routine but tedious bookkeeping of
constants. In particular, I will use the informal notation X≪ Y or Y ≫ X
to denote the statement that X is “much less than” Y or Y is “much larger
than” X, by some large constant factor.

3.9.1. Reduction to a linear problem. Traditionally, the Erdos distance
problem has been attacked by first casting it as a question about incidences
between circles, by starting with the trivial observation that if two points
xi, xj are equidistant from a third point xk, then xi, xj lie on a circle centred
at xk.

The incidence geometry of circles, however, is not quite as well under-
stood as the incidence geometry of lines, and so one often then converted the
circle incidence problem to a line incidence problem, for instance by using
the elementary Euclidean geometry fact that if two circles intersected at a
pair of points, then the centres of these circles would lie on the perpendic-
ular bisector of that pair of points. Indeed, by combining this elementary
observation with the celebrated Szemerédi-Trotter theorem [SzTr1873] that
gives a sharp incidence bound for a collection of lines and points, Chung,
Szemerédi, and Trotter [ChSzTr1992] were already able to obtain the re-

spectable lower bound of g(N)� N4/5−o(1).

8In truth, I can only assume that at least n/2 of the objects are of the first type, or at least

n/2 of the objects are of the second type; but in practice, having n/2 instead of n only ends up

costing an unimportant multiplicative constant in the type of estimates used here.
9In practice, the dyadic pigeonhole principle can only achieve this after throwing away all

but about n/ logN of the original n objects; it is this type of logarithmic loss that eventually
leads to the logarithmic factor in the main theorem.
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The first innovation of Guth and Katz (which builds upon earlier work
in this direction in [ElSh2010]) is to use elementary Euclidean geometry
to recast the distance problem as a linear problem in a slightly different
fashion, namely as an incidence problem of lines in three dimensions R3

rather than two.

Let’s see how this works. To prove the main theorem, we will ar-
gue by contradiction, assuming that g(N) ≪ N/ logN for some large N .
Thus, we can find N points x1, . . . , xN in the plane which only subtend
g(N)≪ N/ logN distances. We think of these distances as the lengths of

line segments xixj connecting two of the points xi, xj . There are
(
N
2

)
∼ N2

different line segments xixj that have these lengths. A standard application
of the Cauchy-Schwarz inequality then shows that there must be many pairs
of distinct but congruent line segments xixj , xkxl (i.e. line segments of equal
length |xi − xj | = |xk − xl|); in fact, their number must be(

N
2

)2
g(N)

−
(
N

2

)
≫ N3 logN.

So, we have a lot (≫ N3 logN) of pairs xixj , xkxl of congruent line
segments. Now we use a trivial but fundamentally important observation of
Elekes and Sharir to recast the problem in terms of rigid motions:

Proposition 3.9.3. Two line segments AB,CD in the plane are congruent
if and only if there is an orientation-preserving rigid motion that maps A
to C and B to D. Furthermore, this rigid motion is unique.

Proof. Translate A to C and then rotate appropriately. �

Remark 3.9.4. The above observation exploits the fact that Euclidean
geometry is a Klein geometry - a geometry determined by a Lie group of
isometries, which in this case is the two-dimensional special Euclidean group
SE(2) ≡ SO(2)nR2 of orientation-preserving rigid motions. It is plausible
that the arguments here can extend to other Klein geometries. However,
it is much less clear as to what one can salvage from this argument when
working with a much less symmetric geometry, such as one coming from a
more general metric space. This is in contrast to much of the previous work
on this problem, which exploited somewhat different features of Euclidean
geometry, such as incidence properties or arithmetic structure.

From the above proposition we thus see that we can find ≫ N3 logN
quintuples (xi, xj , xk, xl, R), where R ∈ SE(2) is such that R(xi) = R(xk)
and R(xj) = R(xl).

We now dualise the problem; rather than think about rigid motions
acting on pairs of points, we think about pairs of points describing a set
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of rigid motions. For any pair of points x, y, let `x→y ⊂ SE(2) be the set
of all rigid motions that map x to y. This is a one-dimensional subset of
SE(2); indeed, `x→y consists of the translation from x to y, together with
rotations around an origin p that lies on the perpendicular bisector of xy,
with a rotation angle θ obeying the relation∣∣∣∣cot

θ

2

∣∣∣∣ =
|pm|
|mx|

where m := x+y
2 is the midpoint of x and y. If we discard the translation

(which can easily be dealt with by a separate argument) as well as the point
reflection (corresponding to the case p = m, θ = π), and focus only on the
rotations by angles less than π, we in fact see that the origin p of the rotation
depends in a linear fashion on the quantity cot θ2 . Thus, if we parameterise

(most of) SE(2) by the coordinates (p, cot θ2) ∈ R3, we thus see that we can

view each `x→y as a line in R3, and we will adopt this perspective for the
rest of this post.

Remark 3.9.5. It may seem slightly miraculous that the set `x→y of rigid
motions from x to y has the geometry of a line; we will give an explanation
of this phenomenon elsewhere.

Let L be the collection of all the lines `xi→xk ⊂ R3 generated by pairs
of points xi, xk from our collection, thus there are ∼ N2 such lines10. The
≫ N3 logN quintuples (xi, xj , xk, xl, R) described earlier give rise to ≫
N3 logN intersecting pairs `, `′ ∈ L of lines in L. So the question now
comes down to a simple question about incidences of lines: is it possible for
∼ N2 lines in three-dimensional space R3 to generate ≫ N3 logN pairs
`, `′ of intersecting lines? If the answer to this question is “no”, then we are
done.

Unfortunately, the answer to the question is “yes”. One quickly comes
up with two basic counterexamples to that question:

(1) (Concurrency) If one has ∼ N2 lines that all go through the same
point p, then we will have ∼ N4 pairs of intersecting lines.

(2) (Coplanarity) If one has ∼ N2 lines that all lie in the same plane
π, with no two lines being parallel, then we will have ∼ N4 pairs
of intersecting lines.

Slightly less obviously, there is a third counterexample that comes from
a regulus (or hyperbolic paraboloid) - a doubly ruled surface in R3. A typical
example of a regulus is the set {(x, y, z) ∈ R3 : z = xy}. On the one hand,
this surface is ruled by the lines {(x, y, xy) : y ∈ R} for x ∈ R; on the other
hand, it is also ruled by the lines {(x, y, xy) : x ∈ R} for y ∈ R. If we then

10It is easy to see that different pairs of points (xi, xk) lead to different lines.
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pick ∼ N2 lines from the first family of lines and ∼ N2 from the second
family, then we obtain another family of ∼ N2 lines that lead to ∼ N4 pairs
of intersecting lines.

However, all is not lost here, because we are not dealing with an arbitrary
family L of ∼ N2 lines in R3, but rather with a special family that was
generated ultimately by N points x1, . . . , xN in R2. As such, the special
structure of this family can be used to rule out the concurrency, coplanarity,
and regulus counterexmaples. Indeed, observe that if a rigid motion R maps
xi to xj , then it cannot also map xi to xk for some k 6= j. This implies that
`xi→xj and `xi→xk cannot intersect. This limits the amount of concurrency
in L; letting i run from 1 to N , we indeed conclude that at most N lines in
L can meet at a point, which eliminates the concurrency counterexample11.

In a similar spirit, observe that for a given plane π, the requirement that
a line in R3 lie in that plane is a codimension two constraint on that line
(the space of lines in a plane is two-dimensional, while the space of lines in
R3 is four-dimensional). Thus, for fixed xi, the requirement that `xi→xj lie
in π is a codimension two constraint on xj , and thus by Bezout’s theorem,
it should12 only be satisfiable by O(1) values of xj . Letting i run from 1 to
N , we conclude that any plane π can contain at most O(N) lines from L,
thus neutralising the coplanarity counterexample. The same argument also
shows that any regulus also can contain at most O(N) lines from L (because
a regulus is an algebraic surface of degree 2, and so the Bezout argument
still applies).

Now, it turns out that the elimination of the concurrency, coplanarity,
and regulus obstructions allows us to now give the right answer to the pre-
vious question. Indeed, Guth and Katz show

Theorem 3.9.6. Let L be a collection of ∼ N2 lines in R3, such that at
most N lines in L meet at a point, and such that any plane or regulus
contains at most O(N) lines in L. Then there are at most O(N3 logN)
pairs `, `′ ∈ L of intersecting lines in L.

The above discussion has shown (modulo a few details) that Theorem
3.9.6 implies Theorem 3.9.2, so it suffices now to show Theorem 3.9.6. This
is a significant simplification, because it is an assertion about incidences of
lines, rather than congruence of line segments or incidences of circles, and
we know a lot more about how configurations of lines intersect than we do
about configurations of circles or of congruences of line segments.

11More precisely, the best one now can do is get ∼ N groups of N concurrent lines, but this

only yields ∼ N3 pairs of intersecting lines, which is acceptable.
12One has to check that the constraints are non-degenerate, but this is routine; actually, in

this particular case one can also argue directly using elementary Euclidean geometry instead of
Bezout’s theorem.
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Of course, it remains to prove Theorem 3.9.6. It is convenient to pigeon-
hole based on the concurrency of the lines in L. Let k ≥ 2, and suppose
that has a set of points S, such that for each point p in S there are at least
k lines in L passing through p. From the concurrency bound we know that
k ≤ N . Then each point in p contributes ∼ k2 pairs of intersecting lines, so
we need to show that P does not get much larger than N3/k2. And indeed
this is the case:

Theorem 3.9.7. Let L be a collection of ∼ N2 lines in R3, such that any
plane or regulus contains at most O(N) lines in L. Let 2 ≤ k ≤ N , and let
S be a set of points, each of which has at least k lines in L passing through
it. Then |S| � N3/k2.

A simple dyadic summation argument allows one to deduce Theorem
3.9.6 from13 Theorem 3.9.7. The hypothesis that each plane or regulus
contains at most O(N) lines, incidentally, is very reminiscent of the Wolff
axiom in the work on the Kakeya conjecture; see [Wo1995].

It is worth noting that the bound in Theorem 3.9.7 is completely sharp.
Indeed, consider two parallel grids

{(i, j, 0) ∈ Z2 × {0} : 1 ≤ i, j ≤
√
N}

and
{(i, j, 1) ∈ Z2 × {1} : 1 ≤ i, j ≤

√
N}

and let L be the set of lines connecting a point in the first grid to a point in
the second grid. Then one can verify that L obeys the required hypotheses
for Theorem 3.9.7, and a number-theoretic calculation14 shows that for any
2 ≤ k � N , the number of points in R3 that are incident to at least k lines
in L is ∼ N3/k2.

It is also worth noting that if one replaces the real line R by a finite
field Fq, then the claim fails for large k. Indeed, if one sets N = q2 and L
to be the set of all lines in F3

q , then the hypotheses of Theorem 3.9.7 hold,

but each of the q3 points in F3
q is incident to ∼ q2 lines in L, which soon

leads to a significant violation of the conclusion of that theorem. Thus, any
proof of Theorem 3.9.7 in the large k case cannot be purely algebraic in
nature must somehow use a property of the real line that is not shared by
finite fields. This property will be the ordered nature of the real line, which
manifests itself in the Szemerédi-Trotter theorem and in the ham sandwich
theorem, both of which are used in the proof. However, this example does
not prevent the small k case from being purely algebraic.

13Note that the case k = 1 is not relevant, as the points associated to this case do not
contribute any pairs of intersecting lines.

14To see this, first look at the cases k = 2 and k ∼ N2, and then interpolate the arguments;
details are given in [GuKa2010b].
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So, the only thing left to do is to prove Theorem 3.9.7. It turns out that
the multiplicity 2 case k = 2 and the higher multiplicity case k > 2 have to
be treated separately, basically because k concurrent lines will be trapped
in a plane when k = 2, but will usually not be so trapped when k > 2. Also,
note that the regulus obstruction only generates intersections of multiplicity
2; when k > 2, the hypothesis that a regulus contains O(N) points is not
used and so can be dropped.

3.9.2. The k = 2 case. We first verify Theorem 3.9.7 in the k = 2 case,
i.e. we show that the lines L in that theorem can intersect in at most O(N3)
points. As hinted in the previous discussion, the argument here is purely
algebraic in nature, using just the polynomial method (similar to, say, how
Dvir [Dv2009] proved the finite fields Kakeya conjecture, as discussed in
[Ta2009b, §1.1]). As such, the k = 2 result in fact holds over an arbitrary
field, but we will stick to R for sake of notational consistency.

The polynomial method rests on two basic facts:

(1) Given a set S of points in R3, there is a non-trivial polynomial

P : R3 → R of degree O(|S|1/3) that vanishes at all of these points
simultaneously.

(2) If a polynomial P : R3 → R of degree at most d vanishes on more
than d points of a line `, then it must in fact vanish on all of `.

Both facts are easy to prove (see e.g. [Ta2009b, §1.1]). But, as we will
see, they have to be applied carefully in order to obtain a good estimate.

Suppose for sake of contradiction that we can find a set S of points
in R3 of cardinality |S| � N3 such that each point in S is incident to at
least two lines from L. The strategy is then to use Fact 1 find a low-degree
polynomial P that vanishes on S, so that S is contained in the low-degree
surface Σ := {x ∈ R3 : P (x) = 0}. This surface Σ is not necessarily
irreducible; it may be the union of several irreducible subsurfaces. By the
nature of S, there will be lots of lines in L that intersect this surface Σ quite
frequently; by Fact 2, this should force the lines to be trapped inside Σ. Thus
we have a low-degree surface Σ that contains a lot of lines. Hopefully, this
forces many of the irreducible components of Σ to be singly ruled surfaces,
doubly ruled surfaces, or planes. The latter two cases cannot contain too
many lines in L by hypothesis, so we expect the dominant family of lines in L
to be those coming from the singly ruled surfaces. But one can use Bezout-
type theorems to control the number of times lines from one singly ruled
surface of controlled degree can intersect lines from another such surface,
and hopefully this gives the desired O(N3) bound for P .

Let’s now execute this strategy. Fact 1 gives a non-trivial polynomial P
of degree O(|S|1/3) that vanishes at all the points in S. This turns out to be
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too large of a degree bound to close the argument. The problem is that the
set of points S that we want to apply this fact to is not completely arbitrary;
in fact, by its nature, many points in S are going to be collinear (because
each point in S is incident to at least two lines from L), and so heuristically
many of these points in S are in fact “redundant” for the purposes of finding
a polynomial that vanishes on all of S.

We can handle this by the “random refinement” trick. Let us write
|S| = QN3 for some Q≫ 1. Each of these QN3 points is incident to two
lines in L; as there are ∼ N2 lines in L, we thus expect15 each line in L to
be incident to ∼ QN points in S.

Now, let us destroy some of this collinearity by taking a random subset
S′ of S of density about 1/Q. Then S′ will have size about N3, and each line
in L is now expected to be incident to O(N) elements of S′. We apply Fact
1 to get a non-trivial polynomial P of degree O(N) that vanishes at every
point in S′. Applying Fact 2 (and assuming that certain constants were
chosen properly), this implies that P also vanishes at every line in L, and
thus also at every point in S. This should be contrasted with what would
have happened if we applied Fact 1 to S directly, giving a degree bound of
O(Q1/3N) rather than O(N).

So now we have a surface Σ := {x ∈ R3 : P (x) = 0} of degree O(N)
that contains all the ∼ N2 lines in L. We split this surface into irreducible
components. These components may be planes, reguli, singly ruled surfaces,
or not ruled at all. To simplify things let us just consider four extreme
cases16:

(1) Σ consists of the union of planes.

(2) Σ consists of the union of reguli.

(3) Σ consists of the union of singly ruled surfaces.

(4) Σ consists of the union of non-ruled surfaces.

In the first case, degree considerations tell us that there are at mostO(N)
planes, and by hypothesis each of them contains O(N) lines in L. Within
each plane, there are at most O(N2) points of intersection, and between
any two planes π1, π2, all points of intersection must lie in the common line
π1 ∩ π2, which is incident to the O(N) lines of L in π1, π2 in at most O(N)

15Actually, what could happen more generally is that only a fraction of the lines in L, say
αN2 lines for some 0 < α ≤ 1, are contributing the bulk of the incidences, with each line being

incident to about ∼ QN/α points in S; but let us consider the α = 1 case here for simplicity, as

it is the worst case, and the other cases are similar but require a bit more bookkeeping.
16For the full proof, one also has to consider hybrid cases in which more than one of the

above four types appear, and so there are some cross-terms to deal with, but these are relatively
easy to control and will not be discussed here.
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points. Adding this all together we get at most O(N3) points of intersection,
which is acceptable.

A similar argument (which we omit) handles the second case, so we
move on to the third case. Let’s assume for simplicity that each singly ruled
surface has the same degree d; since the total degree of Σ is O(N), we must
then have at most O(N/d) such surfaces. In a singly ruled surface Γ, all but
O(1) of the lines in Γ will come from the single ruling of Γ (i.e. all but O(1)
of the lines will be generators); the contribution of these exceptional lines is
negligible (as there at most O(N) such lines in all, leading to O(N3) points
of intersection) and we shall simply ignore them. There are two remaining
types of intersection to consider; the intersections between two lines from
the same ruling of a single ruled surface, and the intersections from lines
that do not lie in the same ruled surface.

For the first type of intersection, one can show that in a ruled surface
of degree d, any line in the ruling can intersect the other lines in the ruling
in at most O(d) points. So the total number of intersections arising in this
way is O(N2d); since d = O(N), this is acceptable.

To handle the second type of intersection, observe that any line not
incident to a ruled surface Γ can intersect Γ at most O(d) times; summing
over the O(N/d) surfaces Γ and the O(N2) lines in L we obtain at most
O(N3) incidences, as desired.

Finally, we consider the fourth case, where there are no ruled surfaces
anywhere in Σ. Here, one uses an algebraic observation of Cayley [Sa1915]
that classifies ruled surfaces by a bounded number of algebraic conditions:

Proposition 3.9.8. A surface Γ is ruled if and only if, for every point p in
Γ, there exists a line `p through p that is tangent to Γ to order three (thus,
if P is a defining function for Γ, there exists a non-zero vector v such that
P (p) = DvP (p) = D2

vP (p) = D3
vP (p) = 0).

The “only if” direction is obvious, but what we need here is the more
difficult “if” operation. The basic idea is to show (e.g. by using the Picard
uniqueness theorem for ODE) that the foliation induced by the tangent lines
`p consist entirely of straight lines, thus giving the desired ruling of Σ. The
precise order of vanishing is not required for this argument; any bounded
number instead of three would suffice here.

The condition that there exists a non-zero vector v ∈ R3 such that
DvP (p) = D2

vP (p) = D3
vP (p) = 0 can be combined by elementary elimi-

nation theory (or high school algebra, for that matter) into a single alge-
braic condition FL(P )(p) = 0 on p, where FL(P ) is a polynomial of degree
O(deg(P )) known as the flecnode polynomial of P . If Σ := {x : P (x) = 0}
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contains no ruled surfaces, then the above proposition tells us that the flec-
node polynomial FL(P ) shares no common factors with P .

On the other hand, if ` is a line in L oriented in the direction v, and p is a
point in L, then ` lies in Σ, and thus P (p) = DvP (p) = D2

vP (p) = D3
vP (p) =

0. Thus we see that each line ` in L is contained in the zero locus of both P
and its flecnode polynomial FL(P ). However, by applying Bezout’s theorem
to a generic two-dimensional slice of R3, we see that the zero locus of P and
of FL(P ) can only intersect in O(deg(P )×deg(FL(P ))) = O(deg(P )2) lines
at most. But if we chose the constants correctly, this number will be less
than the number of lines in L ∼ N2, leading to the required contradiction.

3.9.3. The k > 2 case. Now we turn to the k > 2 case. Our starting
point here will be the Szemerédi-Trotter theorem [SzTr1873], which asserts
that given a finite set P of points and a finite set L of lines, the number of
incidences |I(P,L)| := |{(p, `) ∈ P × L : p ∈ `}| is bounded by

|I(P,L)| � |P |2/3|L|2/3 + |P |+ |L|.

The theorem is usually stated in the plane R2, but it automatically ex-
tends to higher dimensions, and in particular to R3, by a random projec-
tion argument. This theorem can be proven by crossing number methods
(as discussed in [Ta2008, §2.10]) or by cell decomposition (as discussed in
[Ta2010b, §1.6]). In both cases, the order structure of R (and in particular,
the fact that a line divides a plane into two half-planes) is crucial. But we
will not need to know the proof of this theorem, instead using it as a black
box.

An easy corollary of this theorem is that if L is a family of lines, P is a
family of points, and 2 ≤ k � |L|1/2 is such that each point in P is incident
to at least k points in L, then

(3.33) |P | � |L|2/k3.

If one applies this bound directly to our situation, we obtain the bound
|P | � N4/k3, which is inferior to the desired bound |P | � N3/k2. Actually,
it is not surprising that we get an inferior bound, because we have not yet
exploited the crucial non-coplanarity hypothesis.

However, it is possible to amplify the Szemerédi-Trotter bound by the
method of cell decomposition. As discussed in [Ta2010b, §1.6], the idea
is to carefully carve up the ambient space (which, in this case, is R3) into
smaller regions or “cells”, each of which only contains a small fraction of
the points P and which encounters only a small fraction of the lines L. One
then applies an existing bound (in this case, (3.33)) to each cell, and sums
up over all cells to get what should presumably be a better bound (where



120 3. Analysis

the key point being that the cells should be constructed in such a way that
each line only encounters a small fraction of the cells).

There is however a catch to this method: if one creates too many cells,
then one starts running into the problem that too many points in P and
too many lines in L will now lie on the boundary of the cell, rather than
in the interior. So one has to carefully optimise the complexity of the cell
decomposition.

In previous literature, the most popular way to create cells was by a
random construction, for instance using randomly chosen points and lines
from P and L to create planes, which one then uses to slice up space into
polytope cells, possibly with an additional non-random “cleanup” stage to
remove some degeneracies or other potential difficulties in the cell structure.
One of the key innovations in the Guth-Katz paper is to instead create
cells via the polynomial method, and specifically by the polynomial Ham
Sandwich theorem. This allows for a very efficient and even cell decompo-
sition; the walls of the cell will no longer be flat planes, but will still be
algebraic sets of controlled degree, and this turns out to be good enough
for the application at hand. This is inspired by previous applications of
the polynomial ham sandwich theorem to incidence geometry problems, as
discussed in [Ta2009b, §1.7].

Let us first recall the polynomial ham sandwich theorem (for three di-
mensions), which one can think of as a continuous version of Fact 1 from
the previous section:

Theorem 3.9.9 (Polynomial ham sandwich theorem). Let X1, . . . , Xm be
m bounded open sets in R3. Then there exists a non-trivial polynomial P :
R3 → R of degree O(m1/3) such that the algebraic set {x ∈ R3 : P (x) = 0}
bisects each of the Xi, thus {x ∈ Xi : P (x) < 0} and {x ∈ Xi : P (x) > 0}
have volume equal to half that of Xi.

See for instance [Ta2009b, §1.7] for a proof of this fact (based on the
Borsuk-Ulam theorem).

By taking theX1, . . . , Xm to be the ε-neighbourhood of finite sets S1, . . . , Sm,
and sending ε to zero (using some basic compactness properties of the (pro-
jective) space of polynomials to extract a limit), one can conclude a useful
combinatorial corollary:

Corollary 3.9.10 (Discretised polynomial ham sandwich theorem). Let
S1, . . . , Sm be finite sets of points in R3. Then there exists a non-trivial
polynomial P : R3 → R of degree O(m1/3) such that the algebraic set {x ∈
R3 : P (x) = 0} bisects each of the Si, in the sense that {x ∈ Si : P (x) < 0}
and {x ∈ Si : P (x) > 0} each have cardinality at most |Si|/2.
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Note that the algebraic set {x ∈ R3 : P (x) = 0} may capture some
of the points of Si; indeed, this is necessarily the case if |Si| is odd. This
possibility will need to be addressed later in the argument.

We can iterate this corollary to obtain a nice cell decomposition:

Corollary 3.9.11 (Cell decomposition). Let S be a finite set of points in
R3, and let m ≥ 1. Then there exists a non-trivial polynomial P of degree
O(m1/3) and a decomposition of {x ∈ R3 : P (x) 6= 0} into at most O(m)
cells C, each of which is an open set with boundary in {x ∈ R3 : P (x) = 0},
and each of which contains at most O(|S|/m) points of S. (We allow C to
be disconnected.)

Proof. Without loss of generality we may take m = 2j to be a power of
two. The proposition is trivial for m = 1, and by using Corollary 3.9.10 it
is easy to see (with the right choice of implied constants) that the claim for
m implies the claim for 2m (with the same implied constants), by bisecting
each of the cells obtained for m by an additional bisecting polynomial that
one then multiplies with the existing polynomial. �

Note that Fact 1 from the previous section can be viewed as the case m =
|S| of the above decomposition, in which the cell walls have now absorbed
all the points in S. But for us, the optimal value of m will be significantly
less than |S|, to balance the contribution of the points on the cell walls with
the points in the interior.

We now apply this situation to the situation in Theorem 3.9.7. Fix
3 ≤ k ≤ N , and suppose for contradiction that we can find a set S of points
with |S|≫ N3/k2, with each point in S incident to at least k lines in L.

We will apply the cell decomposition for a certain parameter m; it turns
out that the optimal value here is m ∼ (N/k)3. Thus we obtain a non-trivial
polynomial P of degree O(N/k), and a collection of O((N/k)3) cells, each
of which contains O((k/N)3|S|) points of S in the interior.

By throwing away at most half of the points in S, we can end up in one
of two extreme cases:

(1) (Cellular case) All points in S are in the interior of a cell.

(2) (Algebraic case) All points in S are in the boundary of a cell.

The cellular case becomes easier for m large, while the algebraic case
becomes easier for m small; the choice m ∼ (N/k)3 is used to balance the
two cases.

Let us first consider the cellular case. Then we see that � (N/k)3 cells
C will contain � (k/N)3|S| points of S. Each such point in such a cell C is
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incident to at least k lines from L. Applying the Szemerédi-Trotter bound
(3.33) inside this cell C, we conclude that

(k/N)3|S| � |LC |2/k3,

where LC is the set of lines in L that intersect C. Since |S|≫ N3/k2, we
conclude that

|LC |≫ k2.

On the other hand, as P has degree O(N/k), we see from Bezout’s theorem
that each line in L intersects O(N/k) cells, and so∑

C

|LC | � (N/k)|L| � N3/k.

Since the number of cells here is � (N/k)3, we obtain

(N/k)3k2 ≪ N3/k

which is a contradiction.

Now consider the algebraic case. We have S points, each incident to k
lines from L, which has cardinality ∼ N2. We thus expect each line to be
incident to ∼ k|S|/N2 ≫ N/k points in S. For simplicity we will assume
that every line is of this type (in reality, we would have to throw out some
lines that do not intersect enough points in S).

By construction, all the points in S lie in the algebraic set Σ := {x ∈
R3 : P (x) = 0}, which has degree O(N/k). Applying Fact 2, we conclude
that every line in L is in fact trapped inside Σ.

This is now a situation fairly similar to that of the previous section.
However, we now use the hypothesis that k ≥ 3 to obtain a better bound.
Every point p in S has at least three lines of L passing through it, each of
which lies in Σ. This leads to two possibilities for p:

(1) (Singular case) p is a singular point of Σ (i.e. ∇P (p) = 0).

(2) (Flat case) p is a flat point of Σ (i.e. the p is non-singular, but the
second fundamental form of Σ vanishes at p).

Indeed, if p was non-singular, then Σ has a unique tangent plane at p
along which at least three lines of L are tangent; as they all lie in Σ, this
forces the second fundamental form of Σ to vanish.

By throwing out at most half of the points in S, we may now reduce to
two subcases:

(1) (Singular subcase) All points of S are singular points of Σ.

(2) (Flat subcase) All points of S are flat points of Σ.

Let us consider first the singular subcase. The points S are now con-
tained in the zero locus of P and of ∇P ; the latter is an intersection of



3.10. Bourgain-Guth method 123

three algebraic surfaces of degree O(N/k); by reducing P to be square-free,
we can assume that P and ∇P have no common factor. We already saw
from Fact 2 that all the lines in L were trapped in the zero locus of P ; the
same argument shows that they are also trapped in the zero locus of ∇P .
But by Bezout’s theorem applied to a generic two-dimensional slice of R3

(as was done in the previous section, using FL(P ) instead of ∇P ), we see
that the zero locus of P and ∇P can intersect in at most O(N/k)×O(N/k)
lines, which will contradict the bound |L| ∼ N2 if the constants are chosen
properly.

Now we turn to the flat subcase. Just as the three polynomial compo-
nents ∂e1P, ∂e2P, ∂e3P of ∇P detects singular points of Σ, there are nine
polynomials that detect flat points of Σ, namely the components Qi,j of the
three-dimensional vector fields

Qi := (Dei×∇P∇P )×∇P

for i, j = 1, 2, 3. All nine polynomials Qi,j vanish at a flat point. (This
observation was also used in the preceding problem [GuKa2010].)

The argument for the singular subcase almost carries over without dif-
ficulty to the flat subcase, but there is one problem: it is not necessarily
the case that P does not share a common factor with the Qi,j , so that we
cannot quite apply the Bezout argument immediately. Indeed, P could con-
tain a plane, which of course consists entirely of flat points. However, if P
has no planes, then the set of flat points has positive codimension, and the
argument proceeds as before. At the other extreme, if P consists entirely
of planes, then by degree considerations there are at most O(N/k) planes
present. But by hypothesis, each plane contains at most O(N) lines from L.
Since |L| ∼ N2, this leads to a contradiction (if the implied constants are
chosen correctly). The general case (in which P has some planes, but does
not consist entirely of planes) can be established by combining the previous
two arguments properly.

3.10. The Bourgain-Guth method for proving restriction
theorems

One of my favourite unsolved problems in harmonic analysis is the restric-
tion problem. This problem, first posed explicitly by Elias Stein (see e.g.
[St1979]), can take many equivalent forms, but one of them is this: one
starts with a smooth compact hypersurface S (possibly with boundary) in
Rd, such as the unit sphere S = S2 in R3, and equips it with surface mea-
sure dσ. One then takes a bounded measurable function f ∈ L∞(S, dσ) on
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this surface, and then computes the (inverse) Fourier transform

f̂dσ(x) =

∫
S
e2πix·ωf(ω)dσ(ω)

of the measure fdσ. As f is bounded and dσ is a finite measure, this is
a bounded function on Rd; from the dominated convergence theorem, it is
also continuous. The restriction problem asks whether this Fourier transform

also decays in space, and specifically whether f̂dσ lies in17 Lq(Rd) for some
q < ∞. By the closed graph theorem, this is the case if and only if there is
an estimate of the form

(3.34) ‖f̂dσ‖Lq(Rd) ≤ Cq,d,S‖f‖L∞(S,dσ)

for some constant Cq,d,S that can depend on q, d, S but not on f . By a
limiting argument, to provide such an estimate, it suffices to prove such an
estimate under the additional assumption that f is smooth.

Remark 3.10.1. Strictly speaking, the above problem should be called the
extension problem, but it is dual to the original formulation of the restriction
problem, which asks to find those exponents 1 ≤ q′ ≤ ∞ for which the
Fourier transform of an Lq

′
(Rd) function g can be meaningfully restricted

to a hypersurface S, in the sense that the map g 7→ ĝ|S can be continuously

defined from Lq
′
(Rd) to, say, L1(S, dσ). A duality argument shows that the

exponents q′ for which the restriction property holds are the dual exponents
to the exponents q for which the extension problem holds.

There are several motivations for studying the restriction problem18.
The problem is connected to the classical question of determining the nature
of the convergence of various Fourier summation methods (and specifically,
Bochner-Riesz summation); very roughly speaking, if one wishes to perform
a partial Fourier transform by restricting the frequencies (possibly using a
well-chosen weight) to some region B (such as a ball), then one expects this
operation to well behaved if the boundary ∂B of this region has good re-
striction (or extension) properties. More generally, the restriction problem
for a surface S is connected to the behaviour of Fourier multipliers whose
symbols are singular at S. The problem is also connected to the analysis of
various linear PDE such as the Helmholtz equation, Schrod̈inger equation,
wave equation, and the (linearised) Korteweg-de Vries equation, because so-
lutions to such equations can be expressed via the Fourier transform in the
form fdσ for various surfaces S (the sphere, paraboloid, light cone, and cu-
bic for the Helmholtz, Schrödinger, wave, and linearised Korteweg de Vries
equation respectively). A particular family of restriction-type theorems for

17This is a natural space to control decay because it is translation invariant, which is com-

patible on the frequency space side with the modulation invariance of L∞(S, dσ).
18For a further discussion of these topics, see [Ta2003b].
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such surfaces, known as Strichartz estimates, play a foundational role in
the nonlinear perturbations of these linear equations (e.g. the nonlinear
Schrödinger equation, the nonlinear wave equation, and the Korteweg-de
Vries equation). Last, but not least, there is a a fundamental connection
between the restriction problem and the Kakeya problem, which roughly
speaking concerns how tubes that point in different directions can overlap.

Indeed, by superimposing special functions of the type f̂dσ, known as wave
packets, and which are concentrated on tubes in various directions, one can
“encode” the Kakeya problem inside the restriction problem; in particular,
the conjectured solution to the restriction problem implies the conjectured
solution to the Kakeya problem. Finally, the restriction problem serves as
a simplified toy model for studying discrete exponential sums whose coeffi-
cients do not have a well controlled phase; this perspective was, for instance,
used in [Gr2005] to establish Roth’s theorem in the primes by Fourier-
analytic methods, which was in turn one of the main inspirations for our
later work establishing arbitrarily long progressions in the primes, although
we ended up using ergodic-theoretic arguments instead of Fourier-analytic
ones and so did not directly use restriction theory in that paper.

The estimate (3.34) is trivial for q =∞ and becomes harder for smaller
q. The geometry, and more precisely the curvature, of the surface S, plays
a key role: if S contains a portion which is completely flat, then it is not

difficult to concoct an f for which f̂dσ fails to decay in the normal direction
to this flat portion, and so there are no restriction estimates for any finite
q. Conversely, if S is not infinitely flat at any point, then from the method

of stationary phase, the Fourier transform d̂σ can be shown to decay at a
power rate at infinity, and this together with a standard method known as
the TT ∗ argument can be used to give non-trivial restriction estimates for
finite q. However, these arguments fall somewhat short of obtaining the best
possible exponents q. For instance, in the case of the sphere S = Sd−1 ⊂ Rd,

the Fourier transform d̂σ(x) is known to decay at the rate O(|x|−(d−1)/2) and
no better as d → ∞, which shows that the condition q > 2d

d−1 is necessary

in order for (3.34) to hold for this surface. The restriction conjecture for
Sd−1 asserts that this necessary condition is also sufficient. However, the
TT ∗-based argument gives only the Tomas-Stein theorem [To1975], which

in this context gives (3.34) in the weaker range19 q ≥ 2(d+1)
d−1 .

Over the last two decades, there was a fair amount of work in pushing
past the Tomas-Stein barrier. For sake of concreteness let us work just with

19On the other hand, by the nature of the TT ∗ method, the Tomas-Stein theorem does allow
the L∞(S, dσ) norm on the right-hand side to be relaxed to L2(S, dσ), at which point the Tomas-

Stein exponent
2(d+1)
d−1

becomes best possible. The fact that the Tomas-Stein theorem has an L2

norm on the right-hand side is particularly valuable for applications to PDE, leading in particular

to the Strichartz estimates mentioned earlier.
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the restriction problem for the unit sphere S2 in R3. Here, the restriction
conjecture asserts that (3.34) holds for all q > 3, while the Tomas-Stein
theorem gives only q ≥ 4. By combining a multiscale analysis approach with
some new progress on the Kakeya conjecture, Bourgain [Bo1991] was able
to obtain the first improvement on this range, establishing the restriction
conjecture for q > 4− 2

15 . The methods were steadily refined over the years;
until recently, the best result [Ta2003] was that the conjecture held for all
q > 31

3 , which proceeded by analysing a “bilinear L2” variant of the problem
studied previously by Bourgain [Bo1995] and by Wolff [Wo2001]. This is
essentially the limit of that method; the relevant bilinear L2 estimate fails
for q < 3 + 1

3 .

On the other hand, the full range q > 3 of exponents in (3.34) was ob-
tained by Bennett, Carbery, and myself [BeCaTa2006] (with an alternate
proof later given by Guth [Gu2010]), but only under the additional assump-
tion of non-coplanar interactions. In three dimensions, this assumption was
enforced by replacing (3.34) with the weaker trilinear (and localised) variant

‖f̂1dσ1f̂2dσ2f̂3dσ3‖Lq/3(B(0,R)) ≤ Cq,d,S1,S2,S3,εR
ε

‖f1‖L∞(S1,dσ1)‖f2‖L∞(S2,dσ2)‖f3‖L∞(S3,dσ3)

(3.35)

where ε > 0 and R ≥ 1 are arbitrary, B(0, R) is the ball of radius R in R3,
and S1, S2, S3 are compact portions of S whose unit normals n1(), n2(), n3()
are never coplanar, thus there is a uniform lower bound

|n1(ω1) ∧ n2(ω2) ∧ n3(ω3)| ≥ c
for some c > 0 and all ω1 ∈ S1, ω2 ∈ S2, ω3 ∈ S3. If it were not for this
non-coplanarity restriction, (3.35) would be equivalent to (3.34) (by setting
S1 = S2 = S3 and f1 = f2 = f3, with the converse implication coming
from Hölder’s inequality; the Rε loss can be removed by a lemma from
[Ta1999]). At the time we wrote this paper, we tried fairly hard to try to
remove this non-coplanarity restriction in order to recover progress on the
original restriction conjecture, but without much success.

Very recently, though, Bourgain and Guth [BoGu2010] found a new
way to use multiscale analysis to “interpolate” between the result of Bennett,
Carbery and myself (that has optimal exponents, but requires non-coplanar
interactions), with a more classical square function estimate of Córdoba
that handles the coplanar case. A direct application of this interpolation
method already ties with the previous best known result in three dimensions
(i.e. that (3.34) holds for q > 31

3). But it also allows for the insertion of
additional input, such as the best Kakeya estimate currently known in three
dimensions, due to Wolff [Wo1995]. This enlarges the range slightly to
q > 3.3. The method also can extend to variable-coefficient settings, and in
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some of these cases (where there is so much “compression” going on that no
additional Kakeya estimates are available) the estimates are best possible.

As is often the case in this field, there is a lot of technical book-keeping
and juggling of parameters in the formal arguments of Bourgain and Guth,
but the main ideas and numerology20 can be expressed fairly readily. In
this section, I would like to record this numerology for the simplest of the
Bourgain-Guth arguments, namely a reproof of (3.34) for p > 31

3 .

In order to focus on the ideas in the paper (rather than on the tech-
nical details), I will adopt an informal, heuristic approach, for instance by
interpreting the uncertainty principle and the pigeonhole principle rather
liberally, and by focusing on main terms in a decomposition and ignoring
secondary terms. I will also be somewhat vague with regard to asymp-
totic notation such as �. Making the arguments rigorous requires a certain
amount of standard but tedious effort (and is one of the main reasons why
the Bourgain-Guth paper is as long as it is), which I will not focus on here.

3.10.1. The Córdoba square function estimate. In two dimensions,
the restriction theory is well understood, due to the work of Córdoba, Fef-
ferman, and others (see [Co1985] for a survey). The situation is particularly
simple when one looks at bilinear expressions such as

‖F1F2‖L2(R2)

where F1 := f̂1dσ1, F2 := f̂2dσ2, and dσ1, dσ2 are surface measures on two
smooth compact curves S1, S2 that are transverse in the sense that the unit
normals of S1 are never21 oriented in the same direction as the unit normals
of S2. In this case, we can use Plancherel’s theorem to rewrite the above
expression as a convolution

‖f1dσ1 ∗ f2dσ2‖L2(R2).

The transversality of S1 and S2, combined with the inverse function theorem,
shows that f1dσ1 ∗ f2dσ2 is a non-degenerate pushforward of the tensor
product f1 ⊗ f2, and so one obtains the basic bilinear restriction estimate

‖F1F2‖L2(R2) � ‖f1‖L2(S1,dσ1)‖f2‖L2(S2,dσ2).

This estimate (and higher-dimensional analogues thereof) lead to the bilinear
Xs,b estimates which are of fundamental importance in nonlinear dispersive
equations (particularly those in which the nonlinearity contains derivatives).

20In mathematics, numerology refers to the empirically observed relationships between var-

ious key exponents and other numerical parameters; in many cases, one can use shortcuts such

as dimensional analysis or informal heuristic, to compute these exponents long before the formal
argument is completely in place.

21A model case to consider here are two arcs of the unit circle, one near (1, 0) and one near
(0, 1).
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This bilinear estimate can be localised. Suppose one splits S1 into arcs
S1,α of diameter ∼ 1/r for some r � 1, which induces a decomposition F1 =∑

α F1,α of F1 into components F1,α := ̂f11S1,αdσ1. Similarly decompose
F2 =

∑
β F2,β. Then we have

F1F2 =
∑
α

∑
β

F1,αF2,β.

The Fourier transform of F1,αF2,β is supported in the Minkowski sum S1,α+
S2,β. The transversality of S1, S2 ensures that these sums are basically
disjoint as α, β varies, so by almost orthogonality one has

‖F1F2‖L2(R2) � (
∑
α

∑
β

‖F1,αF2,β‖2L2(R2))
1/2

or equivalently

‖F1F2‖L2(R2) � ‖(
∑
α

|F1,α|2)1/2(
∑
β

|F2,β|2)1/2‖L2(R2).

Actually, this estimate is morally localisable to balls B(x, r) of radius r;
heuristically, we have

(3.36) ‖F1F2‖L2(B(x,r)) � ‖(
∑
α

|F1,α|2)1/2)(
∑
β

|F2,β|2)1/2‖L2(B(x,r)).

Informally22, this is due to the uncertainty principle: localising in space to
scale r wouuld cause the arcs S1,α, S2,β in Fourier space to blur out at the
scale 1/r, but this will not significantly affect the almost disjointness of the
Minkowski sums S1,α + S2,β.

Furthermore, the uncertainty principle suggests to us that F1,α and F2,β

are essentially constant on balls B(x, r) of radius r. As such, the expression
inside the norm on the right-hand side of (3.36) is morally constant on such
balls, which allows us to apply Hölder’s inequality and conclude that

(3.37) ‖F1F2‖Lq(B(x,r)) � ‖(
∑
α

|F1,α|2)1/2)(
∑
β

|F2,β|2)1/2‖Lq(B(x,r))

for any q ≤ 2.

This is a bilinear estimate, but for heuristic purposes it is morally equiv-
alent to the linear estimate

(3.38) ‖F‖Lq(B(x,r)) � ‖(
∑
α

|Fα|2)1/2)‖Lq(B(x,r))

22To make this rigorous, one would use a smoother cutoff than 1B(x,r), and in particular it

is convenient to use a cutoff which is compactly supported in Fourier space rather than physical
space; we will not discuss these technicalities further here.
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for q ≤ 4, where F = f̂dσ and dσ is the surface measure on a curve S
which “exhibits curvature” and such that F is “dominated by transverse

interactions”, Fα = ̂f1Sαdσ, and S is partitioned into arcs Sα of diameter
∼ 1/r. For the purposes of numerology, we will pretend that (3.38) is true as
stated, though in practice one has to actually work with the bilinearisation
(3.37) instead.

Remark 3.10.2. Córdoba [Co1982] used (a rigorous form of) (3.38) to
establish the restriction conjecture (3.34) for curves in the plane (such as
the unit circle) in the optimal range q > 4.

The estimate (3.38) is a two-dimensional one, but it can be stepped up
to a three-dimensional estimate

(3.39) ‖F‖Lq(B(x,r)) � ‖(
∑
α

|Fα|2)1/2)‖Lq(B(x,r))

for q ≤ 4, where F = f̂dσ, dσ is now surface measure on the sphere S2 ⊂ R3,
which one decomposes into caps Sα of diameter O(1/r), f is supported on

the O(1/r)-neighbourhood of a great circle in S2 with Fα := ̂f1Sαdσ, and F
is “dominated by transverse interactions” in a sense that we will not quantify
precisely here. This gives efficient control on F in terms of square functions,
but only in the “transverse coplanar case” in which the frequencies that
dominate F are both coplanar (in the sense that they all lie roughly on the
same great circle) and transverse.

3.10.2. The Bourgain-Guth argument. Now we sketch how the Bourgain-
Guth argument works to establish (3.34) for q > 10

3 . Fix q; we may assume
q < 4. For each radius R ≥ 1, let QR be the best constant in the local
restriction estimate

‖F‖Lq(B(x,R)) ≤ QR‖f‖L∞(S2)

where F := f̂dσ. To show (3.34), one has to show that QR is bounded
uniformly in R. Actually, thanks to an “epsilon removal lemma” that was
proven in [Ta1999] using a variant of the Tomas-Stein argument, it suffices
to show that the logarithmic growth estimate QR � Rε for any ε > 0.

An effective technique for achieving this is an induction on scales argu-
ment, bounding QR efficiently in terms of QR for various scales R′ between 1
and R. This technique was introduced in [Bo1991], using the intermediate

scale R′ :=
√
R (which is a natural scale for the purposes of approximating

spherical caps by disks while still respecting the uncertainty principle). The
subsequent paper [Wo2001] adapted this argument by also relying on scales
R′ = R1−ε that were much closer to R. The Bourgain-Guth argument is
closer in spirit to this latter approach.
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Specifically, one sets K := Rε to be a small power of R, and divides the
sphere S2 into largish caps Sα of radius ∼ 1/K, thus splitting F =

∑
α Fα.

At the same time, we cover B(x,R) by smallish balls B(y,K) of radius K.
On each such ball B(y,K), the functions Fα are morally constant, as per the
uncertainty principle. Of course, the amplitude of the Fα on B(y,K) depend
on α; for each small ball B(y,K), only a fraction of the Fα will “dominate”
the sum F . Roughly speaking, we can then sort the balls B(y,K) into three
classes:

(1) (Non-coplanar case) There exist three dominant caps Sα which do
not lie within O(1/K) of a great circle.

(2) (Non-transverse case) All the dominant caps Sα lie in a cap of size
o(1).

(3) (Transverse coplanar case) All the dominant caps lie withinO(1/K)
of a great circle, but at least two of them are at distance ∼ 1 from
each other.

In the first case, one can control ‖F‖Lq(B(y,K)) by O(KO(1)) non-coplanar
interactions of the form ‖F1F2F3‖Lq/3(B(y,K)), where F1, F2, F3 are portions

of F on non-coplanar portions of the sphere S2. In this case, one can use
(3.35) and obtain a contribution of O(KO(1)) = O(RO(ε)) in this case.

It has been known for some time [TaVaVe1998] that the non-transverse
case can always be eliminated. Basically, if we group the caps Sα into larger
caps S̃β of radius 1/K ′ = o(1), and decompose F =

∑
β F̃β accordingly, then

in the non-transverse case we can morally bound

|F | � (
∑
β

|F̃β|q)1/q

and so

‖F‖Lq(B(x,R)) � (
∑
β

‖F̃β‖qLq(B(x,R)))
1/q.

However, a standard parabolic rescaling argument (which, strictly speaking,
requires one to generalise the sphere to a larger family of similarly curved
surfaces, but let us ignore this technical detail) shows that

‖F̃β‖Lq(B(x,R)) � QR/K′(K
′)4/q−2

and so (since there are ∼ (K ′)2 large caps S̃β)

‖F‖Lq(B(x,R)) � (K ′)6/q−2QR/K′ .

Since q > 3, the exponent of K ′ here is positive, and so this is a good term
for the recurrence.

Finally, we deal with the transverse, coplanar case. Here, the main tool
is the Córdoba-type square function estimate (3.39). Being coplanar, there
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are only about O(K) caps Sα that contribute here, so we can pay a factor

of O(K1/2−1/q) and convert the square function to a `q-function:

‖F‖Lq(B(y,K)) � K1/2−1/q‖(
∑
α

|Fα|q)1/q)‖Lq(B(y,K)).

Summing over all such balls, we obtain

‖F‖Lq(B(x,R)) � K1/2−1/q
∑
α

‖Fα‖qLq(B(x,R)))
1/q).

Again, a parabolic rescaling gives

‖Fα‖Lq(B(x,R)) � K4/q−2QR/K

so the net contribution to ‖F‖Lq(B(x,R)) here is O(K1/2−1/qK6/q−2QR/K).
This leads to the recursion

QR � RO(ε) + (K ′)6/q−2QR/K′ +K1/2−1/qK6/q−2QR/K .

For q > 10/3, the exponents of K ′ and K are negative, and this allows one

to induct on scales and get the required bound QR � RO(ε).

The argument given above is not optimal; the main inefficiency here is
the factor of O(K1/2−1/q) that one pays to convert the square function to
the `q function. This factor is only truly present if almost every cap Sα
along a great circle is genuinely contributing to F . However, one can use
Kakeya estimates to prevent this event from happening too often. Indeed,
thanks to the nature of parabolic scaling, the functions Fα are not merely
essentially constant on balls of radius K, but are in fact essentially constant
on K × K2 tubes oriented in the normal direction of Sα. One can use a
Kakeya estimate (such as the one in [Wo1995]) to then prevent these tubes
from congregating too often with too high of a multiplicity; quantifying this,
Bourgain and Guth were able to relax the constraint q > 10/3 to q > 3.3.
Unfortunately, there are still some residual inefficiencies, and even with the
full Kakeya conjecture, the argument given in that paper only gets down to
3 3

11 .





Chapter 4

Nonstandard analysis

4.1. Real numbers, nonstandard real numbers, and finite
precision arithmetic

The real number system can be thought of as the idealised infinite precision
limit of finite precision arithmetic. In finite precision arithmetic, every quan-
tity that cannot be expressed exactly (e.g. as a terminating decimal) will
instead come with error bars; for instance, a computation of π in finite pre-
cision arithmetic may yield the estimate π = 3.14±0.01, and then a later re-
finement of that computation may yield the improvement π = 3.141±0.001.
Thus a transcendental quantity such as π would not be expressed as any
single finite precision number; instead, π would be viewed as the idealisa-
tion (or limit) of a class of mutually consistent finite precision measurements
(3.14± 0.01, 3.141± 0.001, etc.).

With this perspective, the assertion that two real numbers x, y are equal
means that they are equal to any given finite precision. Thus, for instance,
the real numbers x = 0.999 . . . and y = 1.000 . . . are equal, because they are
both equal to 1±0.1, both equal to 1±0.01, and so forth. At a more formal
level, this is essentially just the standard construction of the real numbers as
the space of Cauchy sequences of rationals, quotiented out by equivalence.

In particular, a real number x is zero if and only if it is indistinguishable
from zero to any finite amount of precision, i.e. one has |x| < 0.1, |x| < 0.01,
and so forth. This is essentially the Archimedean principle. More generally,
if one wishes to prove that x = y, it suffices to show that x = y + O(ε) for
every ε > 0. This trick of giving oneself an epsilon of room is a fundamental
technique in analysis; see [Ta2010].

133
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Among other things, this explains why, in probability theory, an event
can have zero probability without being impossible. For instance, let x
be a real number chosen uniformly at random from the interval [0, 1], and
consider the event E that x equals 0.5. This is contained in the event that x
lies in the subinterval [0.45, 0.55], which occurs with probability 0.1; thus E
has probability at most 0.1. Similarly, as 0.5 is contained in [0.495, 0.505],
we see that E occurs with probability at most 0.01. More generally, the
probability of E cannot be distinguished from zero to any finite precision,
and so E occurs with probability zero. Nevertheless, the event E is of
course not totally empty; it is conceivable (but arbitrarily unlikely) that the
randomly chosen x will indeed equal 0.5 exactly.

There are more precise number systems than the reals, most notably
the hyperreals (or nonstandard reals ∗R), which do not necessarily identify
two numbers if they agree to any finite accuracy (i.e. they no longer obey
the Archimedean principle1); in particular such number systems admit non-
trivial infinitesimals, whose magnitude is less than any standard positive real
number such as 0.1 or 0.01, but which is not zero. For instance, whereas in
the standard reals, the sequences 1/n and 1/n2 both go to zero as n→∞, in
nonstandard analysis, if one takes an ultralimit as n goes to an unbounded
nonstandard natural number N , 1/n and 1/n2 will now converge to two dif-
ferent limits 1/N , 1/N2, which are both infinitesimal, but distinct from each
other and from zero (in particular, 1/N2 will be infinitesimal compared to
1/N). So we see that ultralimits not only capture the classical limiting value
of a sequence, but also retain information about the rate and nature of con-
vergence. But this comes at the cost of losing the (standard) Archimedean
principle (at least if one uses the standard definition of a natural number).

The relationship between standard numbers and nonstandard numbers
in nonstandard analysis is somewhat analogous to that between single-
precision and double-precision numbers in computer programming. In mod-
ern computer languages such as C, integers often come in two2 forms: a
“short” integer, often using just two bytes of storage (and thus only able to
represent numbers up to 216−1 = 65535 in size), and a “long” integer, often
using four bytes of storage (and thus able to represent numbers as large as
232 − 1 = 4, 294, 967, 295). ) These are analogous to standard integers and
nonstandard integers; for instance, the analogue of an unbounded nonstan-
dard integer is a long integer which is too large to be represented correctly
as a short integer. The analogy is not quite perfect, because short integers

1More precisely, they do not obey the standard Archimedean principle - there exist positive

nonstandard reals less than 1/n for every standard natural number n; but they still obey the
nonstandard Archimedean principle, in which n now ranges over the nonstandard natural numbers

rather than the standard ones.
2Let us ignore for now the distinction between signed and unsigned integers.
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are not closed under basic operations such as addition; it is possible for the
sum (say) of two short integers to cause an overflow and give an incorrect
result (or an error message). In contrast, the standard integers are closed un-
der all standard operations (e.g. addition, multiplication, exponentiation,
the Ackermann function, etc.); one cannot ever reach a truly unbounded
nonstandard integer just by using standard operations on standard integers.

Similarly, in computer languages, real numbers are modeled by single-
precision floating point numbers, which have a certain maximum size and a
certain number of digits (or bits) of precision, and then double-precision
numbers, which can be significantly larger and have many more bits of
precision. These are analogous to standard reals and nonstandard reals
respectively. A bounded nonstandard real is then like a floating point num-
ber with additional digits of precision; the operation of taking the standard
part of such a number is analogous to rounding off a double-precision num-
ber to a single-precision one. Again, the analogy is not perfect: in computer
programming, such roundoff can create roundoff errors, but in nonstandard
analysis the map x→ st(x) is a homomorphism and produces no such errors.

In a similar spirit, an infinitesimal is analogous to a double-precision
number which would round to 0 if represented in single-precision. Note that
in double precision one can create numbers such as 0.9999 . . . which would
round to 1 in single-precision, which can be viewed as one way of interpreting
the standard real identity 0.9999 . . . = 1.

Various continuous operations in standard analysis can be interpreted
as discrete operations in nonstandard analysis. For instance, suppose one
wanted to integrate a standard continuous function f : [0, 1] → R from 0
to 1. One way to do it is to extend f to the nonstandard numbers in the
usual fashion, form the Riemann sum 1

N

∑N
n=1 f(n/N) for some unbounded

natural number N , and take the standard part; the Riemann integrability

of f ensures that this will give the standard integral
∫ 1

0 f(x) dx. One can
think of the computational analogue of this, namely numerical integration
of a continuous function using an extremely small step size, and rounding
off all errors below the single-precision level. In numerical analysis, the
accumulated numerical error in such procedures will sometimes be visible at
the single-precision level; but this does not happen in nonstandard analysis
(ultimately due to the properties of ultrafilters used in the construction of
the nonstandard reals).

4.2. Nonstandard analysis as algebraic analysis

One of the features of nonstandard analysis, as opposed to its standard
counterpart, is that it efficiently conceals almost all of the epsilons and
deltas that are so prevalent in standard analysis (cf. [Ta2008, §1.5]). As a
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consequence, analysis acquires a much more algebraic flavour when viewed
through the nonstandard lens.

Consider for instance the concept of continuity for a function f : [0, 1]→
R on the unit interval. The standard definition of continuity uses a bunch
of epsilons and deltas:

• f is continuous iff for every ε > 0 and x ∈ [0, 1] there exists δ > 0
such that for all y in [0, 1] with |y−x| < δ one has |f(y)−f(x)| < ε.

The nonstandard definition, which is logically equivalent, is as follows:

• f is continuous iff for every x ∈ [0, 1] and y ∈ ∗[0, 1] with y =
x+ o(1), one has ∗f(y) = ∗f(x) + o(1).

Here ∗f : ∗[0, 1] → ∗R is the ultralimit extension3 of the original func-
tion f : [0, 1] → R to the ultrapowers ∗[0, 1] and ∗R, and o(1) denotes an
infinitesimal, i.e. a nonstandard real whose magnitude is smaller than any
standard ε > 0. It is a good exercise to test one’s understanding of nonstan-
dard analysis to verify that these two definitions are indeed equivalent.

There is an analogous nonstandard characterisation of uniform continu-
ity:

• f is uniformly continuous iff for every x ∈ ∗[0, 1] and y ∈ ∗[0, 1]
with y = x+ o(1), one has ∗f(y) = ∗f(x) + o(1).

One can now quickly give a nonstandard proof4 of the classical fact that
continuous functions on a compact interval such as [0, 1] are automatically
uniformly continuous. Indeed, if x, y ∈ ∗[0, 1] are such that y = x + o(1),
then x and y have the same standard part z = st(x) = st(y), which lies in
[0, 1]. If f is continuous, then f(y) = f(z) + o(1) and f(x) = f(z) + o(1),
hence f(y)− f(x) = o(1).

One can also use nonstandard analysis to phrase continuity (on compact
domains, at least) in a very succinct algebraic fashion:

• f is continuous if and only if ∗f commutes with the standard part
function st : x→ st(x).

Note how the number of quantifiers required to define continuity has
decreased5 all the way to zero. It is this elimination of quantifiers that
allows the theory to be algebrised; as a zeroth approximation, one can view
algebra as the mathematics of quantifier-free statements.

3See [Ta2008, §1.5] or Section 4.4 for definitions of these terms and more discussion.
4It is instructive to see how the nonstandard proof and the standard proof are ultimately

just reformulations of each other, and in particular how both rely ultimately on the Bolzano-
Weierstrass theorem. In the nonstandard world, Bolzano-Weierstrass is needed to demonstrate

existence of the standard part.
5Of course, they have all been hidden in the definition of the standard part function.
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4.3. Compactness and contradiction: the correspondence
principle in ergodic theory

The correspondence principle between finite dynamical systems6 and infinite
dynamical systems, that allows one to convert certain statements about the
former to logically equivalent statements about the latter. The most well-
known instance of this principle is the Furstenberg correspondence principle
that connects combinatorial statements about large subsets of integers with
ergodic theoretic statements about large subsets of measure-preserving sys-
tems, but the principle is more general than this, as we hope to demonstrate
in this section.

Informally, the correspondence principle equates four types of results:

(1) Local quantitative results for concrete finite systems.

(2) Local qualitative results for concrete infinite systems.

(3) Continuous quantitative results for abstract finite systems.

(4) Continuous qualitative results for abstract infinite systems.

The meaning of these terms should become clearer once we give some specific
examples.

There are many contexts in which this principle shows up (e.g. in Ram-
sey theory, recurrence theory, graph theory, group theory, etc.) but the basic
ingredients are always the same. Namely, the correspondence between Type
1 and Type 2 (or Type 3 and Type 4) arises from a weak sequential compact-
ness property, which, roughly speaking asserts that given any sequence of
(increasingly large) finite systems, there exists a subsequence of such systems
which converges (in a suitably “weak” sense) to an infinite system. (We will
define these terms more precisely in concrete situations later.) More infor-
mally, any “sufficiently large” finite system can be “approximated” in some
weak sense by an infinite system7

By combining compactness with a proof by contradiction argument, one
obtains a compactness and contradiction argument that yields a correspon-
dence principle: any qualitative statement about infinite systems (e.g. that
a certain quantity is always strictly positive) is equivalent to a quantitative
statement about sufficiently large finite systems (e.g. a certain quantity is al-
ways uniformly bounded from below). This principle forms a crucial bridge
between finitary (or quantitative) mathematics and infinitary (or qualita-
tive) mathematics; in particular, by taking advantage of this principle, tools

6I will be vague here about what “dynamical system” means; very broadly, just about any-
thing with a group action could qualify here.

7One can make this informal statement more rigorous using nonstandard analysis and/or
ultrafilters, but we will not take such an approach here; see Section 4.4.
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from one type of mathematics can be used to prove results in the other (cf.
[Ta2008, §1.3]).

In addition to the use of compactness, the other key pillar of the cor-
respondence principle is that of abstraction - the ability to generalise from
a concrete system (on a very explicit space, e.g. the infinite cube {0, 1}Z)
to an more general abstract setting (e.g. an abstract dynamical system,
measure-preserving system, group, etc.) One of the reasons for doing this
is that there are various maneuvres one can do in the abstract setting (e.g.
passing from a system to a subsystem, a factor, or an extension, or by rea-
soning by analogy from other special systems that are different from the
original concrete system) which can be quite difficult to execute or motivate
if one stays within the confines of a single concrete setting. (See also Section
1.6 for further discussion.)

We now turn to several specific examples of this principle in various con-
texts. We begin with the more “combinatorial” or “non-ergodic theoretical”
instances of this principle, in which there is no underlying probability mea-
sure involved; these situations are simpler than the ergodic-theoretic ones,
but already illustrate many of the key features of this principle in action.

4.3.1. The correspondence principle in Ramsey theory. We begin
with the classical correspondence principle that connects Ramsey results
about finite colourings, to Ramsey results about infinite colourings, or (equiv-
alently) about the topological dynamics of covers of open sets. We illustrate
this by demonstrating the equivalence of three statements. The first two are
as follows:

Theorem 4.3.1 (van der Waerden theorem, Type 2 formulation). Suppose
the integers are coloured by finitely many colours. Then there exist arbitrar-
ily long monochromatic arithmetic progressions.

Theorem 4.3.2 (van der Waerden theorem, Type 1 formulation). For every
c and k there exists N such that whenever {1, . . . , N} is coloured by c colours,
there exists a monochromatic arithmetic progression of length k.

It is easy to see that Theorem 4.3.2 implies Theorem 4.3.1. Conversely,
to deduce Theorem 4.3.2 from Theorem 4.3.1, we use the compactness and
contradiction argument as follows. Assume for contradiction that Theorem
4.3.1 was true, but Theorem 4.3.2 was false. Untangling the quantifiers, this
means that there exist positive integers k, c, a sequence Nn going to infinity,
and colourings {1, . . . , Nn} = An,1 ∪ . . .∪An,c of {1, . . . , Nn} into c colours,
none of which contain any monochromatic arithmetic progressions of length
k.

By shifting the sets {1, . . . , Nn} and redefining Nn a little, we can re-
place {1, . . . , Nn} by {−Nn, . . . , Nn}. This sequence of colourings on the
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increasingly large sets {−Nn, . . . , Nn}. One can now extract a subsequence
of such colourings on finite sets of integers that converge pointwise or weakly
to a colouring on the whole set of integers by the usual “Arzelá-Ascoli diag-
onalisation trick”. Indeed, by passing to an initial subsequence (and using
the infinite pigeonhole principle), one can ensure that all of these colourings
eventually become a constant colour at 0; refining to another subsequence,
we can ensure it is a constant colour at 1; then at −1, 2,−2, and so forth.
Taking a diagonal subsequence of these sequences, we obtain a final sub-
sequence of finite colourings that converges pointwise to an infinite limit
colouring. By Theorem 4.3.1, this limit colouring contains an monochro-
matic arithmetic progression of length k. Now note that the property of
being monochromatic at this progression is a local one: one only needs to
inspect the colour of finitely many of the integers in order to verify this
property. Because of this, this property of the infinite limit colouring will
also be shared by the finite colourings that are sufficiently far along the con-
verging sequence. But we assumed at the very beginning that none of these
finite colourings have a monochromatic arithmetic progression of length k,
a contradiction, and the claim follows.

The above argument, while simple, has all the basic ingredients of the
correspondence principle in action: a proof by contradiction, use of weak
compactness to extract an infinite limiting object, application of the infini-
tary result to that object, and checking that the conclusion of that result
is sufficiently8 “finitary”, “local”, or “continuous” that it extends back to
some of the finitary sequence, leading to the desired contradiction.

A key disadvantage of the use of the compactness and contradiction
argument, though, is that it is quite difficult to extract specific quantitative
bounds from any argument that uses this argument; for instance, while
one can eventually “proof mine” the above argument (combined with some
standard proof of Theorem 4.3.1) to eventually get a bound on N in terms
of k and d, such a bound is extremely poor (of Ackermann function type).

Theorem 4.3.1 can be reformulated in a more abstract form:

Theorem 4.3.3 (van der Waerden theorem, Type 4 version). Let X be a
compact space, let T : X → X be a homeomorphism, and let (Vα)α∈A be an
open cover of X. Then for any k there exists a positive integer n and an
open set Vα in the cover such that Vα∩T−nVα∩. . . T−(k−1)nVα is non-empty.

8It is essential that one manages to reduce to purely local properties before passing from

the converging sequence to the limit, or vice versa, since non-local properties are usually not

preserved by the limit. For instance, consider the colouring of {−N, . . . , N} which colours every
integer between -N/2 and N/2 blue, and all the rest red. Then this converges weakly to the

all-blue colouring, and clearly the (non-local) property of containing at least one red element is
not preserved by the limit.
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The deduction of Theorem 4.3.3 from Theorem 4.3.1 is easy, after using
the compactness to refine the open cover to a finite subcover, picking a
point x0 in X, and then colouring each integer n by the index α of the first
open set Vα that contains Tnx0. The converse deduction of Theorem 4.3.1
from Theorem 4.3.3 is the one which shows the “dynamical” aspect of this
theorem: we can encode a colouring Z = A1 ∪ . . . ∪ Ac of the integers as a
point x0 := (cn)n∈Z in the infinite product space {1, . . . , c}Z, where cn is the
unique class such that n ∈ Acn (indeed, one can think of this product space
as the space of all c-colourings of the integers). The infinite product space is
compact with the product (or weak) topology used earlier, thus a sequence
of colourings converge to a limit iff they converge locally (or pointwise).
This space also comes with the standard shift T : (xn)n∈Z → (xn−1)n∈Z
(corresponding to right shift on the space of colourings). If we let X be the
closure of the orbit {Tnx0 : n ∈ Z}, and let V1, . . . , Vc be the open cover
Vi := {(xn)n∈Z : x0 = i}, it is straightforward to show that Theorem 4.3.3
implies Theorem 4.3.1.

4.3.2. The correspondence principle for finitely generated groups.
The combinatorial correspondence used above for colourings can also be
applied to other situations, such as that of finitely generated groups. Recall
that if G is a group generated by a finite set S, we say that G has polynomial
growth if there exists constants K, d such that for every r ≥ 1, the ball Br
of radius r (i.e. the set of words in S of length at most r) has cardinality at
most Krd. Such groups were classified by a well-known theorem of Gromov
[Gr1981]:

Theorem 4.3.4 (Gromov’s theorem on polynomial growth, Type 4 version).
Let G be a finitely generated group of polynomial growth. Then G is virtually
nilpotent (i.e. it has a finite index subgroup that is nilpotent).

This theorem is discussed further in Section 2.5.

As observed in [Gr1981], Theorem 4.3.4 is equivalent to a finitary ver-
sion:

Theorem 4.3.5 (Gromov’s theorem on polynomial growth, Type 3). For
every integers s, K, d, there exists s such that any finitely generated group
with s generators, such that Br has cardinality at most Krd for all 1 ≤ r ≤
R, is virtually nilpotent.

It is clear that Theorem 4.3.5 implies Theorem 4.3.4. For the converse
implication, we use the compactness and contradiction argument. We sketch
the details as follows. First, we make things more concrete (i.e. move from
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Type 4.3.3 and Type 4.3.4 to Type 4.3.1 and Type 4.3.2 respectively) by ob-
serving that every group G on s generators can be viewed as a quotient Fs/Γ
of the (nonabelian) free group on s generators by some normal subgroup Γ.

Suppose for contradiction that Theorem 4.3.5 failed in this concrete
setting; then there exists s, K, d, a sequence Rn going to infinity, and
a sequence Gn = Fs/Γn of groups such that each Gn obeys the volume
condition |Br| ≤ Krd for all 1 ≤ r ≤ Rn.

The next step, as before, is to exploit weak sequential compactness and
extract a subsequence of groups Gn = Fs/Γn that “converge” to some limit
G = Fs/Γ, in the “weak” or “pointwise” sense that Γn converges pointwise
(or locally) to Γ (much as with the convergence of colourings in the previous
setting). The Arzelá-Ascoli argument as before shows that we can find a
subsequence of Gn = Fs/Γn which do converge pointwise to some limit ob-
ject G = Fs/Γ; one can check that the property of being a normal subgroup
is sufficiently “local” that it is preserved9 under limits, thus Γ is a normal
subgroup of Fs and so G is well-defined as a group.

As volume growth is a local condition (involving only words of bounded
length for any fixed r), we then easily conclude that G is of polynomial
growth, and thus by Theorem 4.3.4 is virtually nilpotent. Some nilpotent
algebra reveals that every virtually nilpotent group is finitely presented,
so in particular there are a finite list of relations among the generators
which guarantee this virtual nilpotency property. Such properties are local
enough that they must then persist to groups Gn sufficiently far along the
subsequence, contradicting Theorem 4.3.5.

A slight modification of the above argument also reveals that the step
and index of the nilpotent subgroup of G can be bounded by some constant
depending only on K, d, s; this gives Theorem 4.3.5 meaningful content
even when G is finite (in contrast to Theorem 4.3.4, which is trivial for
finite groups). On the other hand, an explicit bound for this constant (or
for R) in terms of s, K, d was only obtained quite recently, in [ShTa2010].

4.3.3. The correspondence principle for dense sets of integers. Now
we turn to the more “ergodic” variants of the correspondence principle, start-
ing with the fundamental Furstenberg correspondence principle connecting
combinatorial number theory with ergodic theory. We will illustrate this
with the classic example of Szemerédi’s theorem [Sz1975].

There are many finitary versions of Szemerédi’s theorem. Here is one:

Theorem 4.3.6 (Szemerédi’s theorem, Type 1 version). Let k ≥ 2 and
0 < δ ≤ 1. Then there exists a positive integer N = N(δ, k) such that

9One way to view this convergence is that algebraic identity obeyed by the generators of G, is
eventually obeyed by the groups sufficiently far along the convergent subsequence, and conversely.
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every subset A of {1, . . . , N} with |A| ≥ δN contains at least one k-term
arithmetic progression.

The standard “Type 2” formulation of this theorem is the assertion that
any subset of the integers of positive upper density has arbitrarily long
arithmetic progressions. While this statement is indeed easily shown to
be equivalent to Theorem 4.3.6, the Furstenberg correspondence principle
instead connects this formulation to a rather different one, in which the
deterministic infinite set is replaced by a random one. Recall that a random
subset of integers Z is a random variable A taking values in the power set
2Z of the integers (or more formally, with a distribution that is a Borel
probability measure on 2Z with the product topology), and so in particular
the probabilities of any cylinder events such as

P(3, 5 ∈ A; 7, 11 6∈ A)

that involve only finitely many of the elements of A, are well-defined as
numbers between 0 and 1. The Carathéodory extension theorem10 (com-
bined with some topological properties of 2Z) shows, conversely, that any
assignment of numbers between 0 and 1 to each cylinder set, which obeys
various compatibility conditions such as

P(3 ∈ A) = P(3, 5 ∈ A) + P(3 ∈ A; 5 6∈ A)

can be shown to give rise to a well-defined random set A.

We say that a random set A of integers is stationary if for every integer
h, the shifted set A+h has the same probability distribution as A. In terms
of cylinder events, this is equivalent to a collection of assertions such as

P(3, 5 ∈ A; 7, 11 6∈ A) = P(3− h, 5− h ∈ A; 7− h, 11− h 6∈ A)

and so forth. One can then equate Theorem 4.3.6 with

Theorem 4.3.7 (Szemerédi’s theorem, Type 2 version). Let A be a sta-
tionary random infinite set of integers such that P(0 ∈ A) > 0 (which, by
stationarity, implies that P(n ∈ A) > 0 for all n), and let k ≥ 2. Then, with
positive probability, A contains a k-term arithmetic progression for each k.

It is not difficult to show that Theorem 4.3.6 implies Theorem 4.3.7. We
briefly sketch the converse implication, which (unsurprisingly) goes via the
usual compactness-and-contradiction argument. Suppose for contradiction
that Theorem 4.3.7 is true, but Theorem 4.3.6 fails. Then we can find k
and δ, a sequence of Nn going to infinity, and sets An ⊂ {1, . . . , Nn} with
|An| ≥ δNn with no k-term arithmetic progressions.

10See e.g. [Ta2011, §1.7] for a discussion of this theorem.
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We now need to extract a stationary random infinite set A of integers
as a limit of the deterministic finite sets An. The way one does that is
by randomly translating each of the An. More precisely, let Bn denote the
random finite set An − h, where h is chosen from {1, . . . , Nn} uniformly
at random. The probability distribution µn of Bn is a discrete probability
measure on 2Z which is “almost stationary” in the sense that Bn + 1 (say)
has a distribution very close to Bn; for instance probabilities such as P(3, 5 ∈
Bn) and P(3, 5 ∈ Bn+1) can easily be seen to differ only by O(1/Nn). Also,
the fact that |An| ≥ δNn equates to the assertion that P(0 ∈ Bn) ≥ δ.

By using the same type of Arzel-Ascoli argument as before, we can show
that some subsequence of the random variables Bn converge weakly11 to a
limit B in the sense that the cylinder probabilities of Bn converge to those
of B along this subsequence; thus for instance

lim
n→∞

P(3, 5 ∈ Bn; 17 6∈ Bn) = P(3, 5 ∈ B; 17 6∈ B).

Since the Bn are approximately stationary, one can show that B is ex-
actly stationary. Since P(0 ∈ Bn) is bounded uniformly away from zero, one
can show that P(0 ∈ B) is positive. Thus, we can apply Theorem 4.3.7 to
show that B contains a k-term arithmetic progression with positive proba-
bility. Since there are only countably many k-term arithmetic progressions,
the countable pigeonhole principle then tells us that there exists some k-
term arithmetic progression a, a + r, . . . , a + (k − 1)r which lies in B with
positive probability. This is a “local” property on B. By weak convergence,
this means that this same is true for Bn for n sufficiently far along this
subsequence; in particular, the corresponding deterministic sets An contain
k-term arithmetic progressions, a contradiction. Thus Theorem 4.3.7 does
imply Theorem 4.3.6.

Much as Theorem 4.3.1 is equivalent to Theorem 4.3.4, Theorem 4.3.7
can be reformulated in a more abstract manner, known as the Furstenberg
recurrence theorem:

Theorem 4.3.8 (Szemerédi’s theorem, Type 4 version). Let (X,µ, T ) be a
probability space with a measure-preserving bimeasurable map T : X → X
(thus T is invertible, and T, T−1 are measurable and measure-preserving),
and let A ⊂ X have positive measure µ(A) > 0. Then there exists r > 0

such that µ(A ∩ T−rA ∩ . . . ∩ T (k−1)rA) > 0.

We leave the equivalence of Theorem 4.3.8 with Theorems 4.3.6, 4.3.7
as an exercise. (See also [Ta2009, §2.10] for further discussion.)

11To get from the cylinder probabilities back to a random variable, one uses the Carathéodory

extension theorem. Weak convergence (or more precisely, weak-* convergence) of measures is also
known as vague convergence.
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4.3.4. The correspondence principle for dense sets of integers, II.
The deduction of Theorem 4.3.6 from Theorem 4.3.7 gives that the set A
appearing in Theorem 4.3.6 has at least one k-term arithmetic progression,
but if one inspects the argument more carefully, one sees that in fact one has
a stronger statement that if N is large enough. Namely, there exists some
1 ≤ r ≤ C(k, δ) such that A contains at least c(k, δ)N k-term arithmetic
progressions a, a+ r, . . . , a+ (k − 1)r of step r. We leave this derivation as
an exercise.

It is possible however to find even more progressions in the set A:

Theorem 4.3.9 (Szemerédi’s theorem, Varnavides-type version). Let k ≥ 2
and 0 < δ ≤ 1. Then there exists a positive integer N0 = N0(δ, k) and
c = c(k, δ) > 0 such that every subset A of {1, . . . , N} with |A| ≥ δN
contains at least cN2 k-term arithmetic progressions.

This can be obtained from Theorem 4.3.7 by repeating the derivation of
Theorem 4.3.6 with two additional twists. Firstly, it is not difficult to modify
the Nn appearing in this derivation to be prime (for instance, by appealing
to Bertrand’s postulate). This allows us to identify {1, . . . , Nn} with the
finite field Z/NnZ, giving us the ability to dilate within this set as well as
translate. For technical reasons it is also convenient to restrict An to lie in
the bottom half {1, . . . , bNn/2c} of this set, which is also easy to arrange.
We then argue as before, but with the randomly translated set Bn := An−h
replaced by the randomly translated and dilated set Bn := (An−h)·r, where
h and r are independently chosen at random from this finite field. If one
does this, one finds that probabilities such as P(0, 1, . . . , k − 1 ∈ Bn) are
essentially equal to the number of k-term arithmetic progressions in An,
divided by N2

n (the restriction of An to the bottom half of {1, . . . , Nn} is
necessary to avoid certain “wraparound” issues). If one then repeats the
previous arguments one can establish Theorem 4.3.9 from Theorem 4.3.7.

This type of argument was implicitly first introduced by Varnavides
[Va1959]. Basically, this argument exploits the affine invariance (i.e. Aff(Z)
invariance) of the space of arithmetic progressions, as opposed to mere trans-
lation invariance (i.e. Z invariance).

One can rephrase Theorem 4.3.8 in a quantitative ergodic formulation,
essentially due to Bergelson, Host, McCutcheon, and Parreau [BeHoMcPa2000]:

Theorem 4.3.10 (Szemerédi’s theorem, Type 3 version). Let k ≥ 2 and
0 < δ ≤ 1. Then there exists c(k, δ) > 0 such that for every measure-
preserving system (X,µ, T ) and any measurable set A with µ(A) > δ, we

have lim infN→∞En∈{1,...,N}µ(A ∩ T−nA ∩ . . . ∩ T−(k−1)nA) ≥ c(k, δ).

4.3.5. The correspondence principle for sparse sets of integers. It
is possible to squeeze even more finitary results out of Theorem 4.3.7 than
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was done in the previous two sections. In particular, one has the following
relative version of Szemerédi’s theorem from [GrTa2008]:

Theorem 4.3.11 (Relative Szemerdi theorem). Let k ≥ 2 and 0 < δ ≤ 1.
Let N be a sufficiently large integer, and let R be a “sufficiently pseudo-
random” subset of {1, . . . , N}. Then every subset A of R with |A| ≥ δ|R|
contains one k-term arithmetic progression.

I did not define above what “sufficiently pseudorandom”’ meant as it is
somewhat technical, but very roughly speaking it is a package of approxi-
mate independence conditions which include things like

(4.1) En,h,k∈[N ]ν(n)ν(n+ h)ν(n+ k)ν(n+ h+ k) = 1 + o(1)

where ν(n) := N
|R|1R(n) is the normalised indicator function of R, and all

arithmetic operations are taking place in the cyclic group Z/NZ.

The point of Theorem 4.3.11 is that it allows one to detect arithmetic
progressions inside quite sparse sets of integers (typically,R will have size
about N/ logN , so A and R would be logarithmically sparse). In particular,
a relative Szemerédi theorem similar to this one (but somewhat stronger12

was a key ingredient in the result [GrTa2008] that the primes contain
arbitrarily long arithmetic progressions.

The derivation13 of Theorem 4.3.11 from Theorem 4.3.7 is discussed in
[Ta2004]. We sketch the main ideas here. Once again, we argue by contra-
diction. If Theorem 4.3.11 failed, then one can find k and δ, a sequence Nn

going to infinity, a sequence Rn of “increasingly pseudorandom” subsets of
{1, . . . , Nn}, and sets An ⊂ Rn with |An| ≥ δ|Rn| such that none of the An
contain k-term arithmetic progressions.

As before, it is not difficult to ensure Nn to be prime, and that An lives
in the bottom half Rn ∩ {1, . . . , bNn/2b} of Rn. We then create the random
translated and dilated set Bn := (An − h) · r as before; note that Bn still
has no k-term arithmetic progressions (except in the degenerate case r = 0,
but this case is extremely rare and becomes irrelevant in the limit). We can
also randomly translated and dilate Rn by the same parameters to obtain
a random set Sn := (Rn − r) · r; thus Bn is a relatively dense subset of the
random (and potentially quite sparse) set Sn.

In the previous two sections, we looked at the (Borel) probability mea-
sure µn on the power set 2Z formed by the distribution of Bn, which can be

12Theorem 4.3.11 is unfortunately insufficient for this task, for the technical reason that

the amount of pseudorandomness needed here depends on δ; the relative Szemerédi’s theorem
developed in my paper with Ben only needs a number of pseudorandomness conditions that
depend on k but - crucially - not on δ.

13There are other approaches known to obtain this implication, for instance via the Hahn-
Banach theorem: see [ReTrTuVa2008], [Go2010], or [Ta2011b, §1.7].
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viewed as a collection of cylinder statistics such as

µn(C(3, 5, 17)) = P(3, 5 ∈ Bn; 17 6∈ Bn)

where C(3, 5, 17) is the cylinder set {A ⊂ Z : 3, 5 ∈ A; 17 6∈ A}. In order
for these statistics to actually arise from a Borel probability measure, these
statistics have to be numbers lying between 0 and 1, and they have to obey
compatibility conditions such as

µn(C(3, 17)) = µn(C(3, 5, 17)) + µn(C(3, 5, 17)),

and also

µn(2Z) = µn(C()) = 1.

Conversely, any set of non-negative numbers obeying these properties will
give a Borel probability measure, thanks to the Carathéodory extension the-
orem.

In the sparse case, this approach does not work, because µn degenerates
in the limit if Rn is sparse. For instance, because Bn is so sparse, the
probability P(3, 5 ∈ Bn; 17 6∈ Bn) can go to zero; indeed, we expect this
quantity to look like O(|Rn|/N)2. To fix this we do two things. Firstly,
we replace the absolute complement Bn = {1, . . . , Nn}\Bn that implicitly
appears above by the relative complement Sn. Secondly, we introduce the
normalising factor Nn/|Rn|, so for instance the cylinder set C(3, 5, 17) will
now be assigned the normalised weight

µn(C(3, 5, 17)) = (
Nn

|Rn|
)3P(3, 5 ∈ Bn; 17 ∈ Sn\Bn)

and similarly for other cylinder sets. Perhaps more suggestively, we have

µn(C(3, 5, 17)) = Ea,r∈Z/NnZΛn(a+ 3r)Λn(a+ 5r)(νn − Λn)(a+ 17r)

where Λn := Nn
|Rn|1An and νn := Nn

|Rn|1Rn .

This gives us a non-negative number assigned to every cylinder set, but
unfortunately these numbers do not obey the compatibility conditions re-
quired to make these numbers arise from a probability measure. However,
if one assumes enough pseudorandomness conditions such as (1), one can
show that the compatibility conditions are satisfied approximately, thus for
instance

µn(C(3, 17)) = µn(C(3, 5, 17)) + µn(C(3, 5, 17)) + o(1)

or equivalently

Ea,r∈Z/NnZΛ(a+ 3r)(ν − 1)(a+ 5r)(ν − Λ)(a+ 17r) = o(1).

These conditions can be checked using a large number of applications of
the Cauchy-Schwarz inequality, which we omit here. Thus, µn is not a true
probability measure, but is some sort of approximate “virtual probability
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measure”. It turns out that these virtual probability measures enjoy the
same crucial weak compactness property as actual probability measures,
and one can repeat all the previous arguments to deduce Theorem 4.3.11
from Theorem 4.3.7.

4.3.6. The correspondence principle for graphs. In the previous three
sections we considered the correspondence principle in the integers Z. It is
not difficult to replace the integers with other amenable groups, such as Zd

for some fixed d. Now we discuss a somewhat different-looking instance of
the correspondence principle, coming from graph theory, in which the un-
derlying group is now the (small) permutation group14 Perm0(Z) consisting
of those permutations σ : Z → Z which permute only finitely many ele-
ments. We illustrate the graph correspondence principle with the following
old result of Ruzsa and Szemerédi [RuSz1978]:

Theorem 4.3.12 (Triangle removal lemma, Type 3 version). For every
ε > 0 there exists δ > 0 and N0 > 0 such that for any G = (V,E) be a graph
on N vertices for some N ≥ N0 which has at most δN3 triangles, one can
remove at most εN2 edges from the graph to make the graph triangle free.

We will not discuss why this theorem is of interest, other than to mention
in passing that it actually implies the k = 3 case of Szemerédi’s theorem;
see e.g. [TaVu2006, §10.6]. It turns out that this result can be deduced
from some infinitary versions of this lemma. Here is one instance:

Theorem 4.3.13 (Triangle removal lemma, Type 2 version). Let G be a
random graph on the integers Z which is exchangeable15 in the sense that
any permutation of G has the same distribution as G. Suppose that G is
almost surely triangle free, and let ε > 0. Then there exists a continuous

function F from the space 2(Z2) of graphs on Z (with the product topology)

to the space 2(N2 ) of graphs on N, which is equivariant with respect to per-
mutations of N, such that G′ := F (G) is surely (not just almost surely) a
subgraph of G which is triangle free, and such that P((1, 2) ∈ G\G′) ≤ ε.
Theorem 4.3.14 (Triangle removal lemma, Type 3 version). Let (X,µ)
be a probability space with a measure-preserving action of Perm0(Z), and
let E12, E23, E31 be three measurable sets which are invariant under the sta-
biliser of {1, 2}, {2, 3}, and {3, 1} respectively. Suppose that E12∩E23∩E31

has measure zero. Then one can find subsets E′12, E
′
23, E

′
31 respectively of

E12, E23, E31, which remain invariant under the stabilisers of {1, 2}, {2, 3},
and {3, 1} respectively, such that E′12 ∩ E′23 ∩ E′31 is empty (and not just
measure zero).

14It is convenient to work with this group, rather than the entire group Perm(Z) of permu-

tations, as it is countable.
15This is the analogue of stationarity in this setting.
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The proofs that Theorem 4.3.13 and Theorem 4.3.14 imply Theorem
4.3.12 are somewhat technical, but in the same spirit as the previous applica-
tions of the correspondence principle; see [Ta2007b], this paper respectively
for details. In fact they prove slightly stronger statements than Theorem
4.3.12, in that they give a bit more information as to how the triangle-free
graph G′ is obtained from the nearly triangle-free graph G. The same meth-
ods also apply to hypergraphs without much further difficulty, as is done in
the above papers, but we will not discuss the details here.

4.3.7. The correspondence principle over finite fields. The corre-
spondence principle can also be applied quite effectively to the finite field
setting, which is a dyadic model for the integer setting. In [TaZi2010], for
instance, the equivalence of the following two results was shown:

Theorem 4.3.15 (Inverse Gowers conjecture for finite fields, Type 1 ver-
sion). Let F be a finite field, let k ≥ 2, let δ > 0, and let f : Fn → C be a
function on some vector space Fn bounded in magnitude by 1, and such that
the Gowers uniformity norm

‖f‖Uk(Fn) := (Eh1,...,hk,x∈Fn∆h1 . . .∆hkf(x))1/2k

is larger than δ, where ∆hf(x) := f(x + h)f(x). Then there exists a func-
tion φ : Fn → S1 which is a phase polynomial of degree at most k in the
sense that ∆h1 . . .∆hkφ(x) = 1 for all h1, . . . , hk, x ∈ Fn (or equivalently,

that ‖φ‖Uk(Fn) = 1), such that we have the correlation |Ex∈Fnf(x)φ(x)| ≥
c(F, k, δ) for some c(F, k, δ) > 0 independent of n.

Theorem 4.3.16 (Inverse Gowers conjecture for finite fields, Type 4 ver-
sion). Let (X,µ) be a probability space, let F be a finite field, and let g 7→ Tg
be a measure-preserving action of the infinite group Fω := lim← F

n. Let
f ∈ L∞(X) be such that the Gowers-Host-Kra seminorm

‖f‖Uk(X) := lim
n→∞

(Eh1,...,hk∈Fn

∫
X

∆h1 . . .∆hkfµ)1/2k

is positive, where ∆hf(x) := f(T hx)f(x). Then there exists φ : X → S1

which is a phase polynomial in the sense that ∆h1 . . .∆hkφ = 1 a.e., and

which correlates with f in the sense that
∫
X fφ dµ 6= 0.

In [BeTaZi2010], [TaZi2011], Theorem 4.3.16 was established, which
by the correspondence principle alluded to above, implies Theorem 4.3.15.
(See [Ta2011b, §1.5] for further discussion.)

Very roughly speaking, the reason why the correspondence principle is
more effective here than on the integers is because the vector space Fn enjoys
a massively transitive action of the general linear group GL(Fn) that mixes
things around in a manner much stronger than even the affine action Aff(Z)
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mentioned earlier (which is basically 2-transitive but not k-transitive for any
higher k).

4.3.8. The correspondence principle for convergence of ergodic av-
erages. The final instance of the correspondence principle that we will dis-
cuss here goes in the opposite direction from previous instances. In the
preceding seven instances, the interesting aspect of the principle was that
one could use a qualitative result about infinite systems to deduce a quan-
titative result about finite systems. Here, we will do the reverse: we show
how a result about infinite systems can be deduced from one from a finite
system. We will illustrate this with a very simple result from ergodic theory,
the mean ergodic theorem:

Theorem 4.3.17 (Mean ergodic theorem, Type 4 version). Let (X,µ, T ) be
a measure-preserving system, and let f ∈ L2(X). Let SN be the averaging
operators SNf := E1≤n≤NT

nf . Then SNf is a convergent sequence in
L2(X) as N →∞.

This is of course a well-known result with many short and elegant proofs;
the proof method that we sketch here (essentially due to Avigad, Gerhardy,
and Towsner [AvGeTo2010]) is lengthier and messier than the purely in-
finitary proofs, but can be extended to some situations in which it had been
difficult to proceed in an infinitary manner (see e.g. [Ta2008b]).

The basic problem with finitising this theorem is that there is no uniform
rate of convergence in the mean ergodic theorem: given any ε > 0, we know
that the averages SNf eventually lie within ε of their limit for N large
enough, but it is known that the N we need for this is not uniform in the
choice of the system (X,µ, T ) or the function f, and can indeed by arbitrarily
large for given ε even after fixing the size of f . So a “naive” finitisation does
not work, much as a naive finitisation of the infinite convergence principle
(every bounded monotone sequence converges), as discussed in [Ta2008,
§1.3].

The resolution is in fact very similar to that discussed in [Ta2008, §1.3].
Observe that if x1, x2, . . . is any sequence in a complete metric space (e.g.
the real line, or L2(X)), the statement that “xn” converges”, or equivalently
that “xn is Cauchy”, is equivalent to

For every ε > 0, there exists n such that for all sufficiently
large m, d(xn, xm) ≤ ε,

which is in turn equivalent to the lengthier, but more finitistic, statement

For every ε > 0 there exists F0 : N → N such that for
every F : N → N that grows faster than F0 in the sense
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that F (n) > F0(n) for all n, one has d(xn, xF (n)) ≤ ε for
some n.

The point here is that once the function F is selected, one only has to
verify the closeness of a single pair of elements in the sequence, rather than
infinitely many. This makes it easier to finitise the convergence statement
effectively. Indeed, Theorem 4.3.17 is easily seen (by another compactness
and contradiction argument) to be equivalent to

Theorem 4.3.18 (Mean ergodic theorem, Type 3 version). For every ε > 0
and every sufficiently rapid F (i.e. F grows faster than some F0 depending
on ε) there exists N such that for every measure-preserving system (X,µ, T )
and every f ∈ L2(X) with ‖f‖L2(X) ≤ 1, we have ‖Snf − SF (n)f‖L2(X) ≤ ε
for some 1 ≤ n ≤ N .

Note that this theorem is quantitative in the sense that N depends only
on ε and F , and not on the underlying system; indeed one can give an explicit
value for N , arising from iterating F about 1/ε2 times. See [Ta2009, §2.8]
for further discussion.

4.4. Nonstandard analysis as a completion of standard
analysis

Many structures in mathematics are incomplete in one or more ways. For
instance, the field of rationals Q or the reals R are algebraically incomplete,
because there are some non-trivial algebraic equations (such as x2 = 2 in
the case of the rationals, or x2 = −1 in the case of the reals) which could
potentially have solutions (because they do not imply a necessarily false
statement, such as 1 = 0, just using the laws of algebra), but do not actually
have solutions in the specified field.

Similarly, the rationals Q, when viewed now as a metric space rather
than as a field, are also metrically incomplete, beause there exist sequences
in the rationals (e.g. the decimal approximations 3, 3.1, 3.14, 3.141, . . . of the
irrational number π) which could potentially converge to a limit (because
they form a Cauchy sequence), but do not actually converge in the specified
metric space.

A third type of incompleteness is that of logical incompleteness, which
applies now to formal theories rather than to fields or metric spaces. For
instance, Zermelo-Frankel-Choice (ZFC) set theory is logically incomplete,
because there exist statements (such as the consistency of ZFC) which could
potentially be provable by the theory (because it does not lead to a contra-
diction, or at least so we believe, just from the axioms and deductive rules
of the theory), but is not actually provable in this theory.
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A fourth type of incompleteness, which is slightly less well known than
the above three, is what I will call elementary incompleteness (and which
model theorists call the failure of the countable saturation property). It ap-
plies to any structure that is describable by a first-order language, such as a
field, a metric space, or a universe of sets. For instance, in the language of
ordered real fields, the real line R is elementarily incomplete, because there
exists a sequence of statements (such as the statements 0 < x < 1/n for
natural numbers n = 1, 2, . . .) in this language which are potentially simul-
taneously satisfiable (in the sense that any finite number of these statements
can be satisfied by some real number x) but are not actually simultaneously
satisfiable in this theory.

In each of these cases, though, it is possible to start with an incom-
plete structure and complete it to a much larger structure to eliminate the
incompleteness. For instance, starting with an arbitrary field k, one can
take its algebraic completion (or algebraic closure) k; for instance, C = R
can be viewed as the algebraic completion of R. This field is usually sig-
nificantly larger than the original field k, but contains k as a subfield, and
every element of k can be described as the solution to some polynomial
equation with coefficients in k. Furthermore, k is now algebraically complete
(or algebraically closed): every polynomial equation in k which is potentially
satisfiable (in the sense that it does not lead to a contradiction such as 1 = 0
from the laws of algebra), is actually satisfiable in k.

Similarly, starting with an arbitrary metric space X, one can take its
metric completion X; for instance, R = Q can be viewed as the metric
completion of Q. Again, the completion X is usually much larger than the
original metric space X, but contains X as a subspace, and every element
of X can be described as the limit of some Cauchy sequence in X. Fur-
thermore, X is now a complete metric space: every sequence in X which
is potentially convergent (in the sense of being a Cauchy sequence), is now
actually convegent in X.

In a similar vein, we have the Gödel completeness theorem, which implies
(among other things) that for any consistent first-order theory T for a first-
order language L, there exists at least one completion T of that theory T ,
which is a consistent theory in which every sentence in L which is potentially
true in T (because it does not lead to a contradiction in T ) is actually true
in T . Indeed, the completeness theorem provides at least one model (or
structure) U of the consistent theory T , and then the completion T = Th(U)
can be formed by interpreting every sentence in L using U to determine
its truth value. Note, in contrast to the previous two examples, that the
completion is usually not unique in any way; a theory T can have multiple
inequivalent models U, giving rise to distinct completions of the same theory.
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Finally, if one starts with an arbitrary structure U, one can form an ele-
mentary completion ∗U of it, which is a significantly larger structure which
contains U as a substructure, and such that every element of ∗U is an ele-
mentary limit of a sequence of elements in U (I will define this term shortly).
Furthermore, ∗U is elementarily complete; any sequence of statements that
are potentially simultaneously satisfiable in ∗U (in the sense that any finite
number of statements in this collection are simultaneously satisfiable), will
actually be simultaneously satisfiable. As we shall see, one can form such
an elementary completion by taking an ultrapower of the original structure
U. If U is the standard universe of all the standard objects one considers in
mathematics, then its elementary completion ∗U is known as the nonstan-
dard universe, and is the setting for nonstandard analysis.

As mentioned earlier, completion tends to make a space much larger and
more complicated. If one algebraically completes a finite field, for instance,
one necessarily obtains an infinite field as a consequence. If one metrically
completes a countable metric space with no isolated points, such as Q, then
one necessarily obtains an uncountable metric space (thanks to the Baire
category theorem). If one takes a logical completion of a consistent first-order
theory that can model true arithmetic, then this completion is no longer
describable by a recursively enumerable schema of axioms, thanks to Gödel’s
incompleteness theorem. And if one takes the elementary completion of a
countable structure, such as the integers Z, then the resulting completion
∗Z will necessarily be uncountable.

However, there are substantial benefits to working in the completed
structure which can make it well worth the massive increase in size. For
instance, by working in the algebraic completion of a field, one gains access
to the full power of algebraic geometry. By working in the metric completion
of a metric space, one gains access to powerful tools of real analysis, such
as the Baire category theorem, the Heine-Borel theorem, and (in the case
of Euclidean completions) the Bolzano-Weierstrass theorem. By working in
a logically and elementarily completed theory (aka a saturated model) of a
first-order theory, one gains access to the branch of model theory known
as definability theory, which allows one to analyse the structure of definable
sets in much the same way that algebraic geometry allows one to analyse the
structure of algebraic sets. Finally, when working in an elementary comple-
tion of a structure, one gains a sequential compactness property, analogous
to the Bolzano-Weierstrass theorem, which can be interpreted as the foun-
dation for much of nonstandard analysis, as well as providing a unifying
framework to describe various correspondence principles between finitary
and infinitary mathematics.
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In this section, I wish to expand upon these above points with regard to
elementary completion, and to present nonstandard analysis as a completion
of standard analysis in much the same way as, say, complex algebra is a
completion of real algebra, or real metric geometry is a completion of rational
metric geometry.

4.4.1. Elementary convergence. In order to understand the concept of a
metric completion of a metric spaceX = (X, d), one needs to know about the
distinction between a Cauchy sequence and a convergent sequence. Similarly,
to talk about the elementary completion of a structure U, one needs the
notion of an elementarily Cauchy sequence and an elementarily convergent
sequence.

Let us set out some notation. We assume that we have some first-order
language L, which allows one to form sentences involving the first-order
logical symbols (∀, ∃, ∨, ∧, ¬, =⇒ , etc.), variables of one or more types,
the equality symbol =, some constant symbols, and some operations and
relations. For instance:

• L could be the language of multiplicative groups, in which there is
only one type of object (a group element), a constant symbol e, a
binary operation · from pairs of group elements to group elements,
and a unary operation ()−1 from group elements to group elements.

• L could be the language of real ordered fields, in which there is
one type of object (a field element), constant symbols 0, 1, binary
operations +, ·, and unary operations −, ()−1 (with the latter only
being defined for non-zero elements), and the order relation <.

• L could be the language of (formal) metric spaces, in which there
are two types of objects (points in the space, and real numbers),
the constants, operations and relations of a real ordered field, and a
metric operation d from pairs of points in the space to real numbers.

• L could be the language of sets, in which there is one type of object
(a set) and one relation ∈.

• etc., etc.

We assume that the language has at most countably many types, constants,
operations, and relations. In particular, there are at most countably many
sentences in L.

A structure U for a language L is a way of interpreting each of the object
classes in L as a set, and each of the constants, operations, and relations
as an elements, functions, and relations on those sets respectively. For in-
stance, a structure for the language of groups would be a set G, together
with a constant symbol e ∈ G, a binary function · : G × G → G, and a
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unary operation ()−1 : G → G. In particular, groups are structures for the
language of groups, but so are many non-groups. Each structure U can be
used to interpret any given sentence S in L, giving it a truth value of true or
false. We write U |= S if S is interpreted to be true by U. For instance, the
axioms of a group can be expressed as a single sentence A, and a structure
U for the language of groups is a group if and only if U |= A.

Now we introduce the notion of elementary convergence.

Definition 4.4.1 (Elementary convergence). Let U be a structure for a
language L, and let x1, x2, . . . be a sequence of objects in U (all of the same
type). Let x be another object in U of the same type as the xn.

• We say that the sequence xn is elementarily Cauchy if, for every
predicate P (x) that takes one variable of the same type as the xn as
input, the truth value of P (xn) becomes eventually constant (i.e.
either P (xn) is true for all sufficiently large n, or P (xn) is false
for all sufficiently large n). We write this eventual truth value as
limn→∞ P (xn).

• We say that the sequence xn is elementarily convergent to x if we
have limn→∞ P (xn) = P (x) for every predicate P (x) that takes one
variable of the same type as the xn or x as input.

Remark 4.4.2. One can view the predicates P (or more precisely, the sets
{x ∈ U : P (x) true}) as generating a topology on U (or more precisely, on
the domain of one of the object types of L in U), in which case elementary
convergence can be interpreted as convergence in this topology. Indeed, as
there are only countably many predicates, this topology is metrisable.

To give an example, let us use the language of ordered fields L, with
the model R, and pick a transcendental number x, e.g. x = π. Then the
sequence x+ 1

n is elementarily convergent to x. The reason for this is that
the language L is fairly limited in nature, and as such it can only define a
fairly small number of sets; in particular, if P is a predicate of one variable,
then the Tarski-Seidenberg theorem [Ta1951], [Se1954] tells us that the
set {y ∈ R : P (y) true} cut out by that set has to be a semi-algebraic set
over the algebraic reals, i.e. a finite union of (possibly unbounded) intervals
(which can be open, closed, or half-open) whose endpoints are algebraic
reals. In particular, a transcendental number x, if it lies in such a set, lies
in the interior of such a set, and so x + 1

n will also lie in such a set for n
large enough, and similarly if x lies outside such a set.

In contrast, if one picks an algebraic number for x, such as x =
√

2, then
x+ 1

n does not converge in an elementary sense to x, because one can find a

predicate such as P (y) := (y2 = 2) which is true for x but not true for any
of the x+ 1

n . So the language L has sufficiently “poor vision” that it cannot
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easily distinguish a transcendental number such as π from nearby numbers
such as π + 1

n , but its vision is significantly better at algebraic numbers,

and in particular can distinguish
√

2 from
√

2 + 1
n easily. So we see that

elementary convergence is, in this case, a slightly stronger concept than the
usual topological or metric notion of convergence on R.

In the case of the real model R of ordered fields, elementary limits are
unique, but this is not the case in general. For instance, in the language
of fields, and using the complex model C, any given complex number z is
elementarily indistinguishable16 from its complex conjugate z, and so any
sequence zn of complex numbers that would converge elementarily to z,
would also converge elementarily to z.

A related problem is that the operations on a structure U are not nec-
essarily continuous with respect to these elementary limits. For instance,
if xn, yn are sequences of real numbers that converge elementarily to x, y
respectively, it is not necessarily the case that xn + yn converge to x + y
(consider for instance the case when xn = π + 1/n and yn = −π + 1/n).

One way to partially resolve these problem is to consider the convergence
not just of sequences of individual objects xn, but of sequences of families
(xn,α)α∈A of objects:

Definition 4.4.3 (Joint elementary convergence). Let U be a structure a
language L, let A be a set, and for each natural number n, let (xn,α)α∈A be
a tuple of of elements in U, and let (xα)α∈A be another tuple in U, with each
xn,α having the same type as xα.

• We say that the tuples (xn,α)α∈A are jointly elementarily Cauchy
if, for every natural number m, every predicate P (y1, . . . , ym) of m
variables in L of the appropriate type, and every α1, . . . , αm ∈ A,
the truth value of P (xn,α1 , . . . , xn,αm) is eventually constant.

• We say that the tuples (xn,α)α∈A are jointly elementarily conver-
gent to (xα)α∈A if, for every natural number m, every predicate
P (y1, . . . , ym) of m variables in L of the appropriate type, and every
α1, . . . , αm ∈ A, the truth value of P (xn,α1 , . . . , xn,αm) converges
to the truth value of P (xα1 , . . . , xαm) as n→∞.

For instance, using the complex model C of the language of fields, if
zn converges elementarily to (say) i, then we cannot prevent zn from also
converging elementarily to−i. (Indeed, it is not hard to see that zn converges
elementarily to i if and only zn ∈ {−i,+i} for all sufficiently large n.) But if
we ask that (zn, i) jointly converges to (i, i), then (zn, i) will not also jointly
converge to (−i, i) (though it does jointly converge to (−i,−i)).

16In fact, there is an enormous Galois group Gal(C/Q), the action of which is completely

undetectable with regards to elementary convergence.
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In a similar fashion, if xn, yn are reals that converge jointly elementarily
to x, y, then xn + yn will converge elemntarily to x+ y also.

Now we give a more sophisticated example. Here, L is the language of
set theory, and U is a model of ZFC. In ZFC set theory, we can of course
construct most of the objects we are used to in modern mathematics, such as
a copy RU of the real line, a copy NU of the natural numbers, and so forth.
Note that U’s interpretation NU of the natural numbers may be different
from the “true” natural numbers N; in particular, in non-standard models
of set theory, NU may be much larger than N (e.g. it may be an ultrapower
∗N of N). Because of this, we will be careful to subscript U’s copies of such
objects in order to distinguish them from their true counterparts, though it
will not make much difference for this immediate example.

We can also define in U all the formal apparatus needed for probabil-
ity theory, such as a probability space (Ω,B,P) and a real-valued random
variable X : Ω→ RU on that space.

Now suppose that inside U we have a sequence (Ωn,Bn,Pn) of probability
spaces, and a sequence Xn : Ωn → RU of random variables on these prob-
ability spaces. Now suppose the quintuple (Ωn,Bn,Pn, Xn,RU) is jointly
elementarily convergent to a limit (Ω,B,P, X,RU). The axioms of being a
probability space can be encoded inside the first order language of set the-
ory, so the limit (Ω,B,P) is also a probability space (as viewed inside U).
Similarly, X : Ω→ RU is a random variable on this probability space.

Now let q, r be rational numbers. If P(X > q) > r, then by the defini-
tion of elementary convergence (and the fact that rational numbers can be
defined using an expression of finite length in the language L), we see that
Pn(Xn > q) > r holds for all sufficiently large n. From this, one can deduce
that the Xn converge in distribution to X. Thus we see that in this case,
joint elementary convergence is at least as strong as convergence in distri-
bution, though (much as with the example with elementary convergence in
R using the language of ordered fields) the two notions of convergence are
not equivalent.

We included RU in the quintuple due to the use of real numbers such as
P(X > q) in the above discussion, but it is not strictly necessary, because
one can construct RU uniquely in U from the axioms of set theory by using
one of the standard constructions of the real numbers. But note that while
we may use the set RU of real numbers in the above elementary convergence,
one cannot invoke specific real numbers unless they are “constructible” in the
sense that they can be uniquely specified in the language L. If one wished to
be able to use arbitrary real numbers as constants, one would not only place
RU into the quintuple, but also place in every element x of RU into the tuple
(thus making the tuple quite large, and most likely uncountable, though note
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from Skolem’s paradox that it is possible for RU to be (externally) countable
even as it is uncountable from the internal perspective of U).

As we see from the above discussion, joint elementary convergence is a
useful notion even when some of the elements in the tuple are constant. We
isolate this case with another definition:

Definition 4.4.4 (Joint relative elementary convergence). Let U be a struc-
ture for a language L, let A,B be sets, and for each natural number n, let
(xn,α)α∈A be a tuple of of elements in U, and let (xα)α∈A and (cβ)β∈B be
further tuples in U. We say that the tuples (xn,α)α∈A are jointly elementarily
convergent to (xα)α∈A relative to the constants (cβ)β∈B if the disjoint union
(xn,α)α∈A] (cβ)β∈B is jointly elementarily convergent to (xα)α∈A] (cβ)β∈B.

We define the notion of (xn,α)α∈A are jointly elementarily Cauchy rela-
tive to the constants (cβ)β∈B similarly.

Informally, if (xn,α)α∈A is jointly elementarily convergent to (xα)α∈A
relative to (cβ)β∈B if the language L is unable to asymptotically distinguish
the xn,α from the xα, even if it “knows” about the constants cβ.

4.4.2. Elementary completion. Not every sequence in a structure is el-
ementarily Cauchy or elementarily convergent. However, we have the fol-
lowing simple fact:

Proposition 4.4.5 (Arzelá-Ascoli). Let U be a structure for a language L,
and let xn be a sequence of elements in U (all of the same type). Then there
is a subsequence of the xn that is elementarily Cauchy.

Proof. There are at most countably many predicates P1(x), P2(x), . . . of a
single variable of the right type in L. By the infinite pigeonhole principle, we
can find a subsequence xn1,1 , xn1,2 , . . . of the xn such that P1(xn1,i) is even-
tually constant. We can find a further subsequence xn2,1 , xn2,2 , . . . of that
sequence for which P2(xn2,i) is eventually constant. We continue extracting
subsequences xnk,1 , xnk,2 , . . . of this nature for each k = 1, 2, . . ., and then
the diagonal sequence k 7→ xnk,k is elementarily Cauchy, as desired. �

The same argument works when considering countably many variables
and countably many constants (as there are still only countably many pred-
icates to deal with):

Proposition 4.4.6 (Arzelá-Ascoli). Let U be a structure for a language
L, let A,B be at most countable sets, and for each natural number n, let
(xn,α)α∈A be a tuple of of elements in U, and let (cβ)β∈B be another tuple
in U. Then there is a subsequence (xnj ,α)α∈A which is jointly elementarily
Cauchy relative to (cβ)β∈B.
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As in the metric case, not every elementarily Cauchy sequence is ele-
mentarily convergent, and not every sequence has an elementarily conver-
gent subsequence. For instance, in the language of ordered fields, using the
structure R, the sequence 1

n has no elementarily convergent subsequence (be-
cause any limit of such a subsequence would be positive but also less than
1/n for arbitrarily large n, contradicting the Archimedean property of the
reals). From Proposition 4.4.5, we conclude that the reals are elementarily
incomplete; there must exist some subsequence of 1/n that is elementarily
Cauchy, but not elementarily convergent.

However, we can always complete any structure U by passing to the
ultrapower ∗U, which we now briefly review. For the rest of this post, we fix
a single non-principal ultrafilter17 α∞ ∈ βN\N on the (standard) natural
numbers N. A property P (α) of a natural number α is said to hold for all
α sufficiently close to α∞ if the set of α for which P (α) holds lies in the
ultrafilter α∞.

Definition 4.4.7 (Ultrapower). Let U be a structure for some language L.
Given two sequences (xα)α∈N and (yα)α∈N of objects in U, we say that the
sequences are equivalent if one has xα = yα for all α sufficiently close to
α∞. The equivalence class associated to a given sequence (xα)α∈N will be
called the ultralimit of the xα and denoted limα→α∞ xα. The ultrapower ∗U
of U is the collection of all ultralimits limα→α∞ xα of sequences of objects
in U. By identifying ∗x := limα→α∞ x with x for every object x in U, we
see that every object in U can be identified with an object in ∗U. We refer
to elements of U as standard objects, and elements of ∗U as non-standard
objects.

Every relation and operation in U can be extended to ∗U by taking ultra-
limits. For instance, given a k-ary relation R(y1, . . . , yk), and non-standard
objects xi = limα→α∞ xi,α for i = 1, . . . , k, we say that R(x1, . . . , xk) holds in
∗U if and only if R(x1,α, . . . , xk,α) holds in U for all α sufficiently close to α∞.
Similarly, given a k-ary operation f(y1, . . . , yk) and non-standard objects
xi = limα→α∞ xi,α, we define the non-standard object f(x1, . . . , xk) to be the
ultralimit limα→α∞ f(x1,α, . . . , xk,α) of the standard objects f(x1,α, . . . , xk,α).

A fundamental theorem of  Los [Lo1955] asserts that the ultrapower ∗U
is elementarily equivalent to U: any sentence in L which is true in U, is also
true in ∗U, and vice versa; this fact is also known as the transfer principle
for nonstandard analysis. For instance, the ultrapower of an ordered field
is an ordered field, the ultrapower of an algebraically closed field is an al-
gebraically closed field, and so forth. One must be slightly careful, though,

17See [Ta2008, §1.5] for some basic discussion of what non-principal ultrafilters are, and
how they are used in non-standard analysis.
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with models U that involve standard objects such as a copy U of the natural
numbers, or a copy RU of the real numbers; the ultrapower ∗U will have their
own non-standard copy N∗U = ∗NU and R∗U = ∗RU of these objects, which
are considerably larger than their standard counterparts, in the sense that
they contain many more elements. Thus, for instance, if one is taking the
ultrapower of a standard probability space (Ω,B,P), in which the probabil-
ity measure P : B → R takes values in the standard reals, the ultrapower
(∗Ω, ∗B, ∗P) is a non-standard probability space, in which the non-standard
probability measure ∗P : ∗B → ∗R now takes values in the non-standard
reals.

One can view the ultrapower ∗U as the completion of U, in much the
same way as the reals are a completion of the rationals:

Theorem 4.4.8 (Elementary completeness). Every elementarily Cauchy
sequence xn in an ultrapower ∗U is elementarily convergent.

This property is also known as countable saturation.

Proof. We can write xn = limα→α∞ xn,α for each natural number n ∈ N
and a sequence xn,α of standard objects in U. As before, we enumerate the
predicates P1, P2, P3, . . . of one variable. For each natural number m ∈ N,
the truth value of Pm(xn) becomes eventually constant; we will call this
constant limn→∞ Pm(xn).

Now let M be a standard natural number. By construction, there exists
an nM such that

Pm(xnM ) = lim
n→∞

Pm(xn)

for all 1 ≤ m ≤M . As xnM is the ultralimit of the xnM ,α, there thus exists
a set EM ∈ p such that

Pm(xnM ,α) = lim
n→∞

Pm(xn)

for all α ∈ EM . By replacing each EM with
⋂
M ′≤M EM ′ if necessary, we

may assume that the EM are decreasing: E1 ⊃ E2 ⊃ . . ..
For each α ∈ N, let Mα be the largest integer in {0, . . . , α} such that

α ∈ EMα , or Mα = 0 if no such integer exists. By construction, we see that
for any m ∈ N, we haved

Pm(xnMα ,α) = lim
n→∞

Pm(xn)

whenever α ∈ Em and α ≥ m. If we then set x to be the non-standard
object x := limα→α∞ xnMα ,α, we thus have

Pm(x) = lim
n→∞

Pm(xn)

for each m ∈ N, and thus xn converges elementarily to x as required. �
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Combining this theorem with Proposition 4.4.5 we conclude an analogue
of the Bolzano-Weierstrass theorem for ultrapowers:

Corollary 4.4.9 (Bolzano-Weierstrass for ultrapowers). In an ultrapower
∗U, every sequence xn of non-standard objects in ∗U has an elementarily
convergent subsequence xnj .

The same argument works (but with more complicated notation) for
countable families of objects, and with countably many constants:

Theorem 4.4.10 (Bolzano-Weierstrass for ultrapowers, II). Let ∗U be an
ultrapower, let A,B be at most countable, let n 7→ (xn,α)α∈A be a sequence of
tuples of nonstandard objects in ∗U, and let (cβ)β∈B be another sequence of
tuples of nonstandard objects. Then there is a subsequence (xnj ,α)α∈A which
converges jointly elementarily to a limit (xα)α∈A relative to the constants
(cβ)β∈B.

The proof of this theorem proceeds almost exactly as in the single vari-
able case, the key point being that the number of predicates that one has
to stabilise remains countable.

Remark 4.4.11. If one took the ultrafilter α∞ over a larger set than the
natural numbers N, then one could make the sets A,B larger as well.
Such larger saturation properties, beyond countable saturation, are useful in
model theory (particularly when combined with the use of large cardinals,
such as inaccessible cardinals), but we will not need them here.

Conversely, every nonstandard object can be viewed as the elementary
limit of standard objects:

Proposition 4.4.12. Let x ∈ ∗U be a nonstandard object. Then there is a
sequence xn ∈ U of standard objects that converges elementarily to x.

Proof. Let P1, P2, . . . be an enumeration of the predicates of one variable.
For any natural number n, there exists a nonstandard object y ∈ ∗U such
that Pi(y) has the same truth value as Pi(x) for all i = 1, . . . , n, namely
y = x. By transfer, there must therefore exist a standard object xn ∈ U
such that Pi(xn) has the same truth value as Pi(x). Thus xn converges
elementarily to x, and the claim follows. �

Exercise 4.4.1. If x is the ultralimit of a sequence xn of standard objects,
show that there is a subsequence xnj that converges elementarily to x.

Exercise 4.4.2 (Heine-Borel theorem for structures). Given any structure
U, show that the following four statements are equivalent:
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• (Countable saturation) If P1(x), P2(x), . . . are a countable family of
predicates, such that if any finite number of Pi are simultaneously
satisfiable in U (i.e. for each n there exists xn ∈ U such that
Pi(xn) holds for all i = 1, . . . , n), then the entire family of Pi are
simultaneously satisfiable (i.e. there exists x ∈ U such that Pi(x)
holds for all i).

• (Countable compactness) Every countable cover of U by sets of
the form {x ∈ U : P (x) true} for some predicate P , has a finite
subcover.

• (Elementary completeness) Every elementarily Cauchy sequence in
U has an elementarily convergent subsequence.

• (Bolzano-Weierstrass property) Every elementary sequence in U has
an elementarily convergent subsequence.

From Proposition 4.4.12 and Theorem 4.4.8 we see that ∗U can be viewed
as an elementary completion of U, though the analogy with metric comple-
tion is not perfect because elementary limits are not unique.

The Bolzano-Weierstrass theorem for ultrapowers can then be used to
derive the foundational properties of nonstandard analysis. For instance,
consider the standard natural numbers 1, 2, 3, . . . in N, and hence in ∗N.
Applying the Bolzano-Weierstrass theorem for ultraproducts, we conclude
that some subsequence nj of natural numbers will converge elementarily to
a non-standard natural number N ∈ ∗N. For any standard natural number
m ∈ N, we have nj > m for all sufficiently large j, and hence on taking
elementary limits we have N > m (since m is constructible). Thus we
have constructed an unbounded nonstandard natural number, i.e. a number
which is larger than all standard natural numbers.

In a similar spirit, we can also use the Bolzano-Weierstrass theorem
construct infinitesimal nonstandard real numbers 0 < ε = o(1) which are
positive, but less than every standard positive real number (and in particular
less than 1/n for any standard n).

More generally, we have the overspill principle: if P (n, c1, . . . , ck) is
a predicate involving some non-standard constants c1, . . . , ck, such that
P (n, c1, . . . , ck) is true for arbitrarily large standard natural numbers n ∈ N,
then it must also be true for at least one unbounded nonstandard nat-
ural number n ∈ ∗N. Indeed, one simply takes a sequence nj ∈ N of
standard natural numbers for which P (nj , c1, . . . , ck), and extracts a subse-
quence of these nj which converges elementarily to a non-standard limit n
(relative to c1, . . . , ck), which must then be unbounded. Contrapositively,
if P (n, c1, . . . , ck) holds for all unbounded n, then it must also hold for all
sufficiently large standard n.
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Similarly, we have the underspill principle: if a predicate P (x, c1, . . . , ck)
is true for arbitrarily small positive standard real x, then it must also be
true for at least one infinitesimal positive non-standard real x; and contra-
positively, if it is true for all infinitesimal positive non-standard real x, then
it is also true for all sufficiently small standard real x.

A typical application of these principles is in the nonstandard formula-
tion of continuity:

Proposition 4.4.13 (Nonstandard formulation of continuity). Let f : R→
R be a standard function, which can then be extended by ultralimits to the
nonstandard completion ∗f : ∗R → ∗R. Let x ∈ R. Then the following are
equivalent:

• f is continuous at x.

• One has ∗f(y) = f(x)+o(1) whenever y is a nonstandard real such
that y = x+ o(1).

Proof. If f is continuous, then the “epsilon-delta” definition implies that
whenever y = x + o(1) (so that |y − x| < δ for every standard δ > 0),
one has |∗f(y) − f(x)| < ε for every standard ε (by transfer), and thus
∗f(y) = f(x) + o(1). Conversely, if f is discontinuous at x, then there exists
a sequence xn of standard reals converging to x such that |f(xn)−f(x)| > ε
for some standard ε > 0; taking ultralimits using Bolzano-Weierstrass to
extract a subsequence that is elementarily convergent relative to f , we thus
have a non-standard y = x + o(1) with |∗f(y) − f(x)| > ε, so that ∗f(y) 6=
f(x) + o(1). �

Exercise 4.4.3. With the notation as above, show that f is uniformly
continuous if and only if ∗f(y) = ∗f(x) + o(1) whenever x, y ∈ ∗R are such
that y = x+ o(1).

Exercise 4.4.4. With the notation as above, show that f is differentiable
at a standard real x with derivative f ′(x) if and only if ∗f(x+ h) = f(x) +
hf ′(x) + o(h) for all nonstandard reals h = o(1).

4.4.3. The correspondence principle. One can use the Bolzano-Weierstrass
theorem for ultrapowers to establish various versions of the correspondence
principle, which was discussed extensively in Section 4.3. A simple example
occurs when demonstrating the equivalence of colouring theorems, such as
the following:

Theorem 4.4.14 (van der Waerden theorem, infinitary version). Suppose
the integers are coloured by finitely many colours. Then there exist arbitrar-
ily long monochromatic arithmetic progressions.
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Theorem 4.4.15 (van der Waerden theorem, finitary version). For every
c and k there exists N such that whenever {−N, . . . , N} is coloured by c
colours, there exists a monochromatic arithmetic progression of length k.

It is clear that Theorem 4.4.15 implies Theorem 4.4.14. To deduce Theo-
rem 4.4.14 from Theorem 4.4.15, we can argue as follows. Suppose Theorem
4.4.15 fails, then there exists c and k, and arbitrarily large standard natu-
ral number N for which there exists a c-colouring of {−N, . . . , N} without
any monochromatic arithmetic progressions of length k. Applying the over-
spill principle (or the Bolzano-Weierstrass theorem), there must then also
exist an unbounded nonstandard natural number for which there exists a
c-colouring of {−N, . . . , N} without any monochromatic arithmetic progres-
sions of length k. But the nonstandard interval {−N, . . . , N} contains the
standard integers Z as a subset, thus the integers can now also be c-coloured
without any monochromatic arithmetic progressions of length k, contradict-
ing Theorem 4.4.14.

As another example, we can relate qualitative and quantitative results
in algebraic geometry. For instance, the following basic result in algebraic
geometry,

Theorem 4.4.16 (Qualitative decomposition into varieties). Every alge-
braic set over an algebraically closed field can be decomposed into finitely
many algebraic varieties.

is equivalent to the following more quantitative version:

Theorem 4.4.17 (Quantitative decomposition into varieties). Every alge-
braic set A of complexity at most M over an algebraically closed field k can
be decomposed at most CM algebraic varieties, each of complexity at most
CM , where CM depends only on M .

Here, we say that an (affine) algebraic set has complexity at most M if
it lies in a space kn of dimension at most M , and is defined as the zero locus
of at most M polynomials, each of degree at most M .

Clearly Theorem 4.4.17 implies Theorem 4.4.16. To show the converse
implication, suppose that Theorem 4.4.17 failed, then there exists M such
that for every standard natural number N there exists an algebraic set AN
of complexity at most M over some field kN that cannot be decomposed into
fewer than N algebraic varieties. We use the Bolzano-Weierstrass theorem
for ultrapowers to extract a subsequence ANj , kNj that converges jointly
elementarily to some limit A, k. As each of the kNj are algebraically closed
fields, the elementary limit k is also. As the ANj were algebraic sets over
kNj of uniformly bounded complexity, A is an algebraic set over k, and
thus by Theorem 4.4.16 is decomposable into at most N0 algebraic varieties
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for some finite N0. The property of being decomposable into at most N0

algebraic varieties can be phrased in an elementarily open manner, i.e. as
the disjunction of sentences in first-order logic; see [Ta2011b, §2.1], with
the key point being that any top-dimensional component of an algebraic set
has a lesser degree than that of the original set, and so has a uniform bound
on complexity. Thus, we see that for all sufficiently large j, ANj must also
be decomposable into at most N0 algebraic varieties, a contradiction.

Our final example, namely the Furstenberg correspondence principle, is
a bit more sophisticated. Here, we are demonstrating the equivalence of the
following two statements:

Theorem 4.4.18 (Furstenberg recurrence theorem). Let (X,B, µ, T ) be a
measure-preserving system, and let A ⊂ X have positive measure. Let k ≥ 1.
Then there exists r > 0 such that A ∩ T rA ∩ . . . ∩ T (k−1)rA has positive
measure.

Theorem 4.4.19 (Szemerédi’s theorem). Every set of integers of positive
upper density contains arbitrarily long arithmetic progressions.

It is easy to use Theorem 4.4.19 to show Theorem 4.4.18, so we focus
on the reverse inclusion. Suppose that Theorem 4.4.19 failed, then there
exists a standard integer k ≥ 1, a standard real δ > 0, and a standard set
A ⊂ Z of integers of positive upper density at least δ that has no arithmetic
progressions of length k. In particular, for arbitrarily large standardN , there
exists a subset of {−N, . . . , N} of density at least δ without any progressions
of length k. Applying the overspill principle, there thus exists an unbounded
nonstandard N and a nonstandard subset A of {−N, . . . , N} of density at
least δ without any progressions of length k.

Let A be the collection of all nonstandard subsets18 of {−N, . . . , N}.
This is a Boolean algebra. From countable saturation we see that this
Boolean algebra has the following special property: if any set E in this
Boolean algebra is partitioned into an (externally) countable family (En)n∈N
of further elements in this Boolean algebra, then all but finitely many of the
En are empty. For if this were not the case, then by the axiom of choice,
one could find a subsequence nj and a set of elements xnj of Enj . Passing
to a further subsequence, we can assume that the xnj converge elementar-
ily to a limit x. But then this limit lies in E but not in any of the En, a
contradiction.

From the above property, we see that any (external) finitely additive
measure µ : A → [0, 1] on A is automatically a premeasure, and thus by the

18Note that not every subset of a nonstandard set remains nonstandard; it may instead
merely be an external subset. See [Ta2008, §1.5] for further discussion.
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Hahn-Kolmogorov extension theorem (see e.g. [Ta2011, §1.7]), can be ex-
tended to a countably additive measure on the measure-theoretic completion
〈A〉 of the (external) σ-algebra 〈A〉 generated by A.

In particular, if we consider the nonstandard normalised counting mea-
sure

E 7→ #E

2N + 1
on A and take its standard part,

µ : E 7→ st

(
#E

2N + 1

)
this is a finitely additive probability measure on A, and hence extends to
a probability measure in B := 〈A〉, which we will continue to call µ. This
measure is known as the Loeb measure on the nonstandard set {−N, . . . , N}.
Observe that any nonstandard subset of {−N, . . . , N} of infinitesimal den-
sity will have Loeb measure zero. On the other hand, the set A had density
at least δ, and so will have Loeb measure at least δ also.

Next, we define the shift T : {−N, . . . , N} → {−N, . . . , N} by Tx := x+
1, leaving T undefined for x = N . But observe that {N} has an infinitesimal
density, hence has Loeb measure zero. So T is defined almost everywhere,
and is easily seen to be measurable and measure-preserving; it has an (almost
everywhere defined) inverse that is also measurable and measure-preserving.
Thus {−N, . . . , N} with Loeb measure and the shift T becomes a measure-
preserving system. Applying Theorem 4.4.18, we can thus find a standard
r > 0 such that A ∩ T rA ∩ . . . ∩ T (k−1)rA has positive Loeb measure, so A
contains a k-term arithmetic progression, a contradiction.

Remark 4.4.20. As stated, the measure space structure on {−N, . . . , N}
is not separable (i.e. countably generated) or regular (coming from a metric
space). However, this can be fixed by restricting attention to the much
smaller σ-algebra generated by A and its shifts (after dealing with the null
sets on which T is not defined, e.g. by cutting out the o(N) neighbourhood
of {−N,N}). We omit the details.

4.4.4. The Szemerédi regularity lemma. Finally, we use nonstandard
analysis to give a proof of the Szemerédi regularity lemma (see e.g. [Sz1978]),
which we phrase as follows:

Lemma 4.4.21 (Szemerédi regularity lemma). Let G = (V,E) be a finite
graph, and let ε > 0. Then there exists a vertex partition V = V1 ∪ . . .∪ Vm
with m ≤ C(ε) such that for all pairs (i, j) outside of a bad set S with∑

(i,j)∈S |Vi||Vj | ≤ ε|V |2, there exists a density dij such that

|E(A,B)− dij |Vi||Vj || ≤ ε|Vi||Vj |
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for all A ⊂ Vi and B ⊂ Vj, where E(A,B) := |E ∩ (A × B)|, viewing E as
a symmetric subset of V × V .

Here we do not make the cells Vi in the partition of equal size, as is
customary, but it is not too difficult to obtain this additional property from
the above formulation of the lemma. The ability of nonstandard analy-
sis to establish regularity lemmas was first observed by Elek and Szegedy
[ElSz2007].

An application of the Bolzano-Weierstrass theorem for ultraproducts
shows that this lemma is equivalent to the following nonstandard version:

Lemma 4.4.22 (Szemerédi regularity lemma, nonstandard formulation).
Let G = (V,E) be a nonstandard finite graph, and let ε > 0. Then there
exists a vertex partition V = V1 ∪ . . . ∪ Vm, where m is a standard natural
number and V1, . . . , Vm are nonstandard subsets of V such that for all pairs
(i, j) outside of a bad set S with

∑
(i,j)∈S |Vi||Vj | ≤ ε|V |2, there exists a

standard density dij such that

|E(A,B)− dij |Vi||Vj || ≤ ε|Vi||Vj |

for all A ⊂ Vi and B ⊂ Vj.

To see why Lemma 4.4.22 implies Lemma 4.4.21, suppose that Lemma
4.4.21 failed. Then there is a standard ε > 0 such that for every standard
m one could find a standard finite graph Gm = (Vm, Em) which could not
be regularised into m or fewer cells as required by the lemma. Applying
the Bolzano-Weierstrass theorem for ultraproducts, we can assume that Gm
converges elementarily (relative to ε) to a limit G = (V,E), which is then a
nonstandard finite graph G = (V,E) which cannot be regularised into any
standard finite number of cells. But this contradicts Lemma 4.4.22.

It remains to prove Lemma 4.4.22. Let µV : BV → [0, 1] be Loeb measure
on V (as constructed in the previous section), and µV×V : BV×V → [0, 1] be
Loeb measure on V × V . It is easy to see that BV×V contains the product
σ-algebra BV ×BV as a subalgebra, and that the product measure µV ×µV is
the restriction of µV×V to BV ×BV . The edge set E, viewed as a symmetric
nonstandard subset of V ×V , is measurable in BV×V , but is not necessarily
measurable in BV × BV . One can then form the conditional expectation
f := E(1E |BV ×BV ), which is a BV ×BV -measurable function that is defined
up to µV × µV -almost everywhere equivalence, and takes values in [0, 1].

The σ-algebra BV × BV is generated by product sets A × B of BV -
measurable functions, which in turn can be approximated in measure to
arbitrary accuracy by product sets of nonstandard sets. As f is BV × BV -
measurable, we can approximate it to less than ε2 in L1(µV × µV ) norm by
a finite linear combination of indicator functions of products of nonstandard
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sets. Organising these products, we thus see that∥∥∥∥∥∥f −
m∑
i=1

m∑
j=1

dij1Vi×Vj

∥∥∥∥∥∥
L1(µV ×µV )

< ε2

for some finite partition of V into nonstandard sets V1, . . . , Vm and some
standard real numbers dij ∈ [0, 1]. By Markov’s inequality, we thus see that

‖f − dij‖L1(Vi×Vj) < εµV (Vi)µV (Vj)

for all (i, j) outside of a bad set S with∑
S

µV (Vi)µV (Vj) ≤ ε.

Now let A ⊂ Vi and B ⊂ Vj be nonstandard sets, with (i, j) outside of
S. Then

‖f1A×B − dij1A×B‖L1(Vi×Vj) < εµV (Vi)µV (Vj).

On the other hand, 1E − f is orthogonal to all BV × BV functions, and in
particular to 1A×B, and thus∫

V×V
1E1A×B dµV×V =

∫
V×V

f1A×B dµV×V .

Since ∫
V×V

1E1A×B dµV×V =
|E(A,B)|
|V |2

and ∫
V×V

dij1A×B dµV×V = dij
|A||B|
|V |2

and

µV (Vi) = |Vi|/|V |;µV (Vj) = |Vj |/|V |
we thus see that ∣∣∣∣ |E(A,B)|

|V |2
− dij

|A||B|
|V |2

∣∣∣∣ < ε
|Vi||Vj |
|V |2

.

Thus G has been regularised using a finite number of cells, as required.

4.5. Concentration compactness via nonstandard analysis

One of the key difficulties in performing analysis in infinite-dimensional
function spaces, as opposed to finite-dimensional vector spaces, is that the
Bolzano-Weierstrass theorem no longer holds: a bounded sequence in an
infinite-dimensional function space need not have any convergent subse-
quences (when viewed using the strong topology). To put it another way,
the closed unit ball in an infinite-dimensional function space usually fails to
be (sequentially) compact.



168 4. Nonstandard analysis

As compactness is such a useful property to have in analysis, various
tools have been developed over the years to try to salvage some sort of sub-
stitute for the compactness property in infinite-dimensional spaces. One of
these tools is concentration compactness, which was discussed in [Ta2009b,
§1.6]. This can be viewed as a compromise between weak compactness
(which is true in very general circumstances, but is often too weak for appli-
cations) and strong compactness (which would be very useful in applications,
but is usually false), in which one obtains convergence in an intermediate
sense that involves a group of symmetries acting on the function space in
question.

Concentration compactness is usually stated and proved in the language
of standard analysis: epsilons and deltas, limits and supremas, and so forth.
In this post, I wanted to note that one could also state and prove the basic
foundations of concentration compactness in the framework of nonstandard
analysis, in which one now deals with infinitesimals and ultralimits instead
of epsilons and ordinary limits. This is a fairly mild change of viewpoint,
but I found it to be informative to view this subject from a slightly different
perspective. The nonstandard proofs require a fair amount of general ma-
chinery to set up, but conversely, once all the machinery is up and running,
the proofs become slightly shorter, and can exploit tools from (standard)
infinitary analysis, such as orthogonal projections in Hilbert spaces, or the
continuous-pure point decomposition of measures. Because of the substan-
tial amount of setup required, nonstandard proofs tend to have significantly
more net complexity than their standard counterparts when it comes to ba-
sic results (such as those presented in this section), but the gap between
the two narrows when the results become more difficult, and for particu-
larly intricate and deep results it can happen that nonstandard proofs end
up being simpler overall than their standard analogues, particularly if the
nonstandard proof is able to tap the power of some existing mature body of
infinitary mathematics (e.g. ergodic theory, measure theory, Hilbert space
theory, or topological group theory) which is difficult to directly access in
the standard formulation of the argument.

4.5.1. Weak sequential compactness in a Hilbert space. Before turn-
ing to concentration compactness, we will warm up with the simpler situa-
tion of weak sequential compactness in a Hilbert space. For sake of notation
we shall only consider complex Hilbert spaces, although all the discussion
here works equally well for real Hilbert spaces.

Recall that a bounded sequence xn of vectors in a Hilbert space H is
said to converge weakly to a limit x if one has 〈xn, y〉 → 〈x, y〉 for all y ∈ H.
We have the following basic theorem:
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Theorem 4.5.1 (Sequential Banach-Alaoglu theorem). Every bounded se-
quence xn of vectors in a Hilbert space H has a weakly convergent subse-
quence.

The usual (standard analysis) proof of this theorem runs as follows:

Proof. (Sketch) By restricting to the closed span of the xn, we may assume
without loss of generality that H is separable. Letting y1, y2, . . . be a dense
subet of H, we may apply the Bolzano-Weierstrass theorem iteratively, fol-
lowed by the Arzelá-Ascoli diagonalisation argument, to find a subsequence
xnj for which 〈xnj , ym〉 converges to a limit for each m. Using the bounded-
ness of the xnj and a density argument, we conclude that 〈xnj , y〉 converges
to a limit for each y; applying the Riesz representation theorem for Hilbert
spaces, (see e.g. [Ta2010, §1.4]) the limit takes the form 〈x, y〉 for some x,
and the claim follows. �

However, this proof does not extend easily to the concentration compact-
ness setting, when there is also a group action. For this, we need a more
“algorithmic” proof based on the “energy increment method”. We give one
such (standard analysis) proof as follows:

Proof. As xn is bounded, we have some bound of the form

lim sup
n→∞

‖xn‖2 ≤ E

for some finite E. Of course, this bound would persist if we passed from xn
to a subsequence.

Suppose for contradiction that no subsequence of xn was weakly conver-
gent. In particular, xn itself was not weakly convergent, which means that
there exists y1 ∈ H for which 〈xn, y1〉 did not converge. We can take y1 to
be a unit vector. Applying the Bolzano-Weierstrass theorem, we can pass
to a subsequence (which, by abuse of notation, we continue to call xn) in
which 〈xn, y1〉 converged to some non-zero limit c1. We can choose c1 to be
nearly maximal in magnitude among all possible choices of subsequence and
of y1; in particular, we have

lim sup
n→∞

|〈xn, y〉| ≤ 2|c1|

(say) for all other choices of unit vector y.

We may now decompose

xn = c1φ1 + x′1,n + w1,n

where x′1,n is orthogonal to φ1 and w1,n converges strongly to zero. From

Pythagoras theorem we see that x′1,n asymptotically has strictly less energy
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than E:

lim sup
n→∞

‖x′1,n‖2 ≤ E − |c1|2.

If x′1,n was weakly convergent, then xn would be too, so we may assume that
it is not weakly convergent. Arguing as before, we may find a unit vector
φ2 (which we can take to be orthogonal to φ1) and a constant c2 such that
(after passing to a subsequence, and abusing notation once more) one had
a decomposition

x′1,n = c2φ2 + x′2,n + w2,n

in which x′2,n is orthogonal to both φ1, φ2 and w2,n converges strongly to
zero, and such that

lim sup
n→∞

|〈x′1,n, y〉| ≤ 2|c2|

for all unit vectors y. From Pythagoras, we have

lim sup
n→∞

‖x′2,n‖2 ≤ E − |c1|2 − |c2|2.

We iterate this process to obtain an orthonormal sequence φ1, φ2, . . . and
constants c1, c2, . . . obeying the Bessel inequality

∞∑
k=1

|ck|2 ≤ E

(which, in particular, implies that the ck go to zero as k →∞) such that, for
each k, one has a subsequence of the xn for which one has a decomposition
of the form

xn =
k−1∑
i=1

ciφi + x′k,n + wk,n

where wk,n converges strongly to zero, and for which

lim sup
n→∞

|〈x′k,n, y〉| ≤ 2|ck+1|

for all unit vectors y. The series
∑∞

i=1 ciφi then converges (conditionally in
the strong topology) to a limit x, and by diagonalising all the subsequences
we obtain a final subsequence xnj which converges weakly to x. �

Now we give a third proof, which is a nonstandard analysis proof that
is analogous to the second standard analysis proof given above.

The basics of nonstandard analysis are reviewed in [Ta2008, §1.5] (see
also [Ta2011b, §2.1]), as well as Section 4.4. Very briefly, we will need to fix
a non-principal ultrafilter p ∈ βN\N on the natural numbers. Once one fixes
this ultrafilter, one can define the ultralimit limn→p xn of any sequence of
standard objects xn, defined as the equivalence class of all sequences (yn)n∈N
such that {n ∈ N : xn = yn} ∈ p. We then define the ultrapower ∗X of a
standard set X to be the collection of all ultralimits limn→p xn of sequences
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xn in X. We can interpret ∗X as the space of all nonstandard elements of
X, with the standard space X being embedded in the nonstandard one ∗X
by identifying x with its nonstandard counterpart ∗x := limn→p x. One can
extend all (first-order) structures on X to ∗X in the obvious manner, and a
famous theorem of  Los [Lo1955] asserts that all first-order sentences that
are true about a standard space X, will also be true about the nonstandard
space ∗X. Thus, for instance, the ultrapower ∗H of a standard Hilbert space
H over the standard complex numbers C will be a nonstandard Hilbert space
∗H over the nonstandard reals ∗R or the nonstandard complex numbers ∗C.
It has a nonstandard inner product 〈, 〉 : ∗H×∗H → ∗C instead of a standard
one, which obeys the nonstandard analogue of the Hilbert space axioms.
In particular, it is complete in the nonstandard sense: any nonstandard
Cauchy sequence (xn)n∈∗N of nonstandard vectors xn ∈ ∗H indexed by the
nonstandard natural numbers ∗N will converge (again, in the nonstandard
sense) to a limit x ∈ ∗H.

The ultrapower ∗H - the space of ultralimits limn→p xn of arbitrary se-
quences xn in H - turns out to be too large and unwieldy to be helpful for
us. We will work instead with a more tractable subquotient, defined as fol-
lows. Let O(H) be the space of ultralimits limn→p xn of bounded sequences
xn ∈ H, and let o(H) be the space of ultralimits19 limn→p xn of sequences
xn ∈ H that converge to zero. It is clear that o(H), O(H) are vector spaces
over the standard complex numbers C, with o(H) being a subspace of O(H).

We define the quotient space H̃ := O(H)/o(H), which is then also a vec-
tor space over C. One easily verifies that H is a subspace of O(H) that is

disjoint from o(H), so we can embed H as a subspace of H̃.

Remark 4.5.2. When H is finite dimensional, the Bolzano-Weierstrass the-
orem (or more precisely, the proof of this theorem) shows that H = H̃. For

infinite-dimensional spaces, though, H̃ is larger than H, basically because
there exist bounded sequences in H with no convergent subsequences. Thus
we can view the quotient H̃/H as measuring the failure of the Bolzano-
Weierstrass theorem (a sort of “Bolzano-Weierstrass cohomology”, if you
will).

Now we place a Hilbert space structure on H̃. Observe that if x =
limn→p xn and y = limn→p yn are elements of O(H) (so that xn, yn are
bounded), then the nonstandard inner product 〈x, y〉 = limn→p〈xn, yn〉 is
a nonstandard complex number which is bounded (i.e. it it lies in O(C)).
Since C = O(C)/o(C), we can thus extract a standard part st〈x, y〉, defined
as the unique standard complex number such that

〈x, y〉 = st〈x, y〉+ o(1)

19The space o(H) is also known as the monad of the origin of H.
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where o(1) denotes an infinitesimal, i.e. a non-standard quantity whose
magnitude is less than any standard positive real ε > 0. From the Cauchy-
Schwarz inequality we see that if we modify either x or y by an element of
o(H), then the standard part st〈x, y〉 does not change. Thus, we see that

the map x, y 7→ st〈x, y〉 on O(H) descends to a map x, y 7→ 〈x, y〉 on H̃.
One easily checks that this map is20 a standard Hermitian inner product
on H̃ that extends the one on the subspace H. Furthermore, by using
the countable saturation (or Bolzano-Weierstrass) property of nonstandard

analysis (see Section 4.4), we can also show that H̃ is complete with respect

to this inner product; thus H̃ is a standard Hilbert space21 that contains H
as a subspace.

After all this setup, we can now give the third proof of Theorem 4.5.1:

Proof. Let z := limn→p xn be the ultralimit of the xn, then z is an element

of O(H). Let z̃ be the image of z in H̃, and let x be the orthogonal projection
of z̃ to H. We claim that a subsequence of xn converges weakly to x.

For any y ∈ H, z̃ − x is orthogonal to y, and thus 〈z − x, y〉 = o(1). In
other words,

(4.2) lim
n→p
〈xn, y〉 = 〈x, y〉+ o(1)

for all y ∈ H. This is already the nonstandard analogue of weak conver-
gence along a subsequence, but we can get to weak convergence itself with
only a little more argument. Indeed, from (4.2) we can easily construct a
subsequence xnj such that

|〈xnj , xi〉 − 〈x, xi〉| ≤
1

j

and

|〈xnj , x〉 − 〈x, x〉| ≤
1

j

for all 1 ≤ i ≤ j, which implies that

lim
j→∞
〈xnj , y〉 = 〈x, y〉

whenever y is a finite linear combination of the xi and x. Applying a density
argument using the boundedness of the xn, this is then true for all y in the
closed span of the xi and x; it is also clearly true for y in the orthogonal
complement, and the claim follows. �

20If one prefers to think in terms of commutative diagrams, one can think of the inner product

as a bilinear map from the short exact sequence 0→ o(H)→ O(H)→ H̃ → 0 to the short exact

sequence 0→ o(C)→ O(C)→ C→ 0.
21One can view H̃ as a sort of nonstandard completion of H, in a manner somewhat analogous

to how the Stone-Cech compactification βX of a space can be viewed as a topological completion
of X. This is of course consistent with the philosophy of Section 4.4.
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Observe that in contrast with the first two proofs, the third proof gave
a “canonical” choice for the subsequence limit x. This is ultimately because
the ultrafilter p already “made all the choices beforehand”, in some sense.

Observe also that we used the existence of orthogonal projections in
Hilbert spaces in the above proof. If one unpacks the usual proof that these
projections exist, one will find an energy increment argument that is not
dissimilar to that used in the second proof of Theorem 4.5.1. Thus we see
that the somewhat intricate energy increment argument from that second
proof has in some sense been encapsulated into a general-purpose package
in the nonstandard setting, namely the existence of orthogonal projections.

4.5.2. Concentration compactness for unitary group actions. Now
we generalise the sequential Banach-Alaoglu theorem to allow for a group of
symmetries. The setup is now that of a (standard) complex vector space H,
together with a locally compact group G acting unitarily on H in a jointly
continuous manner, thus the map (g, x) 7→ gx is jointly continuous from
G × H to H (or equivalently, the representation map from G to U(H) is
continuous if we give U(H) the strong operator topology). We also assume
that G is a group of dislocations, which means that gnx converges weakly to
zero in H whenever x ∈ H and gn goes to infinity in G (which means that
gn eventually escapes any given compact subset of G). A typical example of
such a group is the translation action h : f(·) 7→ f(· − h) of Rd on L2(Rd),
another example is the scaling action λ : f(·) 7→ 1

λd/2
f( ·λ) of R+ on L2(Rd).

(One can also combine these two actions to give an action of the semidirect
product R+ n Rd on L2(Rd).)

The basic theorem here is

Theorem 4.5.3 (Profile decomposition). Let G,H be as above. Let xn be
a bounded sequence in H obeying the energy bound

lim sup
n→∞

‖xn‖2 ≤ E.

Then, after passing to a subsequence, one can find a sequence φ1, φ2, . . . ∈ H
with the Bessel inequality

∞∑
k=1

‖φk‖2 ≤ E

and group elements gk,n ∈ G for k, n ∈ N such that

g−1
k′,ngk,n →∞ as n→∞
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whenever k 6= k′ and φk, φk′ are non-zero, such that for each K ∈ N one
has the decomposition

xn =

K∑
k=1

gk,nφk + wK,n

such that

lim sup
n→∞

‖wK,n‖2 ≤ E −
K∑
k=1

‖φk‖2

and

lim sup
n→∞

sup
g∈G
|〈g−1wK,n, y〉|2 ≤

∞∑
k=K+1

‖φk‖2

for all unit vectors y, and such that g−1
k,nwK,n converges weakly to zero for

every 1 ≤ k ≤ K.

Note that Theorem 4.5.1 is the case when G is trivial.

There is a version of the conclusion available in which K can be taken to
be infinite, and also one can generalise G to be a more general object than a
group by modifying the hypotheses somewhat; see [ScTi2002]. The version
with finite K is slightly more convenient though for applications to nonlinear
dispersive and wave equations; see [KiVa2008] for some applications of this
type of decomposition. In order for this theorem to be useful for applications,
one needs to exploit some sort of inverse theorem that controls other norms
of a vector w in terms of expressions such as supg∈G |〈gw, y〉|; these theorems
tend to require “hard” harmonic analysis and cannot be established purely
by such “soft” analysis tools as nonstandard analysis.

One can adapt the second proof of Theorem 4.5.1 to give a standard
analysis proof of Theorem 4.5.3:

Proof. (Sketch) Applying Theorem 4.5.1 we can (after passing to a sub-
sequence) find group elements g1,n such that g−1

1,nxn converges weakly to a
limit φ1 ∈ H, which we can choose to be nearly maximal in the sense that

‖φ′1‖ ≤ 2‖φ1‖

(say) whenever φ1 is the weak limit of g−1
nj xnj for some subsequence xnj

and some collection of group elements gnj . In particular, this implies (from
further application of Theorem 4.5.1, and an argument by contradiction)
that

lim sup
n→∞

sup
g∈G
|〈g−1xn, y〉| ≤ 2‖φ1‖

for any unit vector y.
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We may now decompose

xn = g1,nφ1 + w1,n

where g−1
1,nw1,n converges weakly to zero. From Pythagoras’ theorem we see

that w1,n asymptotically has strictly less energy than E:

lim sup
n→∞

‖w1,n‖2 ≤ E − ‖φ1‖2.

We then repeat the argument, passing to a further subsequence and finding
group elements g2,n such that g−1

2,nw1,n converges weakly to φ2 ∈ H, with

lim sup
n→∞

sup
g∈G
|〈g−1x1,n, y〉| ≤ 2‖φ2‖

for any unit vector y.

Note that g−1
1,nw1,n converges weakly to zero, while g−1

2,nw1,n converges

weakly to φ2. If φ2 is non-zero, this implies that g−1
1,ng2,n must go to in-

finity (otherwise it has a convergent subsequence, and this soon leads to a
contradiction).

If one iterates the above construction and passes to a diagonal subse-
quence one obtains the claim. �

Now we give the nonstandard analysis proof. As before, we introduce
the short exact sequence of Hilbert spaces:

0→ o(H)→ O(H)→ H̃ → 0.

We will also need an analogous short exact sequence of groups

0→ o(G)→ O(G)→ G→ 0

where O(G) ≤ ∗G is the space of ultralimits limn→p gn of sequences gn in G
that lie in a compact subset of G, and o(G) ≤ O(G) is the space of ultralimits
of limn→p gn of sequences gn that converge to the identity element (i.e. o(G)
is the monad of the group identity). One easily verifies that o(G) is a normal
subgroup of O(G), and that the quotient is isomorphic22 to G.

The group ∗G acts unitarily on ∗H, and so preserves both o(H) and

O(H). As such, it also acts unitarily on H̃. The induced action of the sub-
group o(G) is trivial; and the induced action of the subgroup O(G) preserves
H.

Let 〈(∗G)H〉 be the closed span of the set {gx : g ∈ ∗G;h ∈ H} in

H̃; this is a Hilbert space. Inside this space we have the subspaces gH for
g ∈ ∗G. As O(G) preserves H, we see that gH = g′H whenever g, g′ lie in
the same coset of ∗G/O(G), so we can define γH for any γ ∈ ∗G/O(G) in a
well-defined manner. On the other hand, if g, g′ do not lie in the same coset

22Indeed, O(G) can be expressed as a semi-direct product Gno(G), though we will not need
this fact here.
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of ∗H, then we have g′ = g limn→p hn for some sequence hn in G that goes
to infinity. As G is a group of dislocations, we conclude that g′H and gH
are now orthogonal. In other words, γ′H and γH are orthogonal whenever
γ, γ′ ∈ ∗G/O(G) are distinct. We conclude that we have the decomposition

(4.3) 〈(∗G)H〉 =
⊕

γ∈∗G/O(G)

γH

where
⊕

is the Hilbert space direct sum.

Now we can prove Theorem 4.5.3. As in the previous section, starting
with a bounded sequence xn in H, we form the ultralimit z := limn→p xn ∈
O(H) and the image z̃ ∈ H̃. We let x be the orthogonal projection of z̃ to
〈(∗G)H〉. By (4.3), we can write

x =
∑
k

gkφk

for some at most countable sequence of vectors φk ∈ H and gk ∈ ∗G, with
the gn lying in distinct cosets of O(G). In particular, for any k 6= k′, g−1

k′ gk
is the ultralimit of a sequence of vectors going to infinity. By adding dummy
values of gk, φk if necessary we may assume that k ranges from 1 to infinity.
Also, one has the Bessel inequality∑

k

‖φk‖2 = ‖x‖2 ≤ ‖z‖2 ≤ E

and from Cauchy-Schwarz and Bessel one has

|〈z −
K∑
k=1

gkφk, gy〉| ≤
∞∑

k=K+1

‖φk‖2.

for any unit vector y ∈ H and g ∈ G. From this we can obtain the required
conclusions by arguing as in the previous section.

4.5.3. Concentration compactness for measures. We now give a vari-
ant of the profile decomposition, for Borel probability measures µn on Rd.
Recall that such a sequence is said to be tight if, for every ε > 0, there is
a ball B(0, R) such that lim supn→∞ µn(Rd\B(0, R)) ≤ ε. Given any Borel
probability measure µ on Rd and any x ∈ Rd, define the translate τxµ to
be the Borel probability measure given by the formula τxµ(E) := µ(E − x).

Theorem 4.5.4 (Profile decomposition for probability measures on Rd).
Let µn be a sequence of Borel probability measures on Rd. Then, after
passing to a subsequence, one can find a sequence ck of non-negative real
numbers with

∑
k ck ≤ 1, a tight sequence νk,n of positive measures whose

mass converges to 1 as n→∞ for fixed k, and shifts xk,n ∈ Rd such that

xk,n − xk′,n →∞ as n→∞
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for all k 6= k′, and such that for each K, one has the decomposition

µn =
K∑
k=1

ckτk,nνk,n + ρK,n

where the error ρK,n obeys the bounds

lim sup
n→∞

sup
x∈Rd

ρK,n(B(x,R)) ≤ sup
k≥K

ck

and
lim
n→∞

ρK,n(B(xk,n, R)) = 0

for all radii R and 1 ≤ k ≤ K.

Furthermore, one can ensure that for each k, νk,n converges in the vague
topology to a probability measure νk.

We first give the standard proof of this theorem:

Proof. (Sketch) Suppose first that

lim sup
n→∞

sup
x∈Rd

µn(B(x,R)) = 0

for all R. Then we are done by setting all the ck equal to zero, and ρK,n = µn.
So we may assume that we can find R such that

lim sup
n→∞

sup
x∈Rd

µn(B(x,R)) = α

for some α > 0; we may also assume that α is approximately maximal in
the sense that

lim sup
n→∞

sup
x∈Rd

µn(B(x,R′)) ≤ 2α

(say) for all other radii R′. By passing to a subsequence, we may thus find
x1,n ∈ Rd such that

lim
n→∞

µn(B(x1,n, R)) = α;

By passing to a further subsequence using the Helly selection principle (or
the sequential Banach-Alaoglu theorem), we may assume that the translates
τ−x1,nµn converge in the vague topology to a limit of total mass at most 1
and at least α, and which can be expressed as c1ν1 for some c1 ≥ α and a
probability measure ν1.

As τ−x1,nµn converges vaguely to c1ν1, we have

lim sup
n→∞

τ−x1,nµn(B(0, R′)\B(0, R)) ≤ c1ν1(Rd\B(0, R/2))

for any 0 < R < R′. By making R′n grow sufficiently slowly to infinity with
respect to n, we may thus ensure that

lim sup
n→∞

τ−x1,nµn(B(0, R′n)\B(0, R)) ≤ c1ν1(Rd\B(0, R/2))
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for all integers R > 0. If we then set c1ν̃1,n to be the restriction of τ−x1,nµn
to B(0, R′n), we see that ν̃1,n is tight, converges vaguely to ν1,n, and has
total mass converging to 1. We can thus split

µn = c1τx1,n ν̃1,n + ρ1,n

for some residual positive measure ρ1,n of total mass converging to 1 − c1,
and such that ρ1,n(B(x1,n, R))→ 0 as n→∞ for any fixed R. We can then
iterate this procedure to obtain the claims of the theorem (after one last
diagonalisation to combine together all the subsequences). �

Now we give the nonstandard proof. We take the ultralimit µ :=
limn→p µn of the standard Borel probability measures µn on Rd, resulting
in a nonstandard Borel probability measure. What, exactly, is a nonstan-
dard Borel probability measure? A standard Borel probability measure,
such as µn, is a map µn : B → [0, 1] from the standard Borel σ-algebra
B to the unit interval [0, 1] which is countably additive and maps Rn to
1. Thus, the nonstandard Borel probability measure is a nonstandard map
µ : ∗B → ∗[0, 1] from the nonstandard Borel σ-algebra (the collection of all
ultralimits of standard Borel sets) to the nonstandard interval [0, 1] which
is nonstandardly countably additive and maps ∗Rn to 1. In particular, it is
finitely additive.

There is an important subtlety here. The nonstandard Borel σ-algebra
is closed under nonstandard countable unions: if (En)n∈∗N is a nonstandard
countable sequence of nonstandard Borel sets (i.e. an ultralimit of stan-
dard countable sequences (En,m)n∈N of standard Borel sets), then

⋃
nEn

is also nonstandard Borel, but this is not necessarily the case for external
countable unions, thus if (En)n∈N is an external countable sequence of non-
standard Borel sets, then

⋃
nEn need not be nonstandard Borel. On the

other hand, B is certainly still closed under finite unions and other finite
Boolean operations, so it can be viewed (externally) as a Boolean algebra,
at least.

Now we perform the Loeb measure construction (which was also intro-
duced in Section 4.4). Consider the standard part st(µ) of µ; this is a finitely
additive map from ∗B to [0, 1]. From the countable saturation property, one
can verify that this map is a premeasure, and so (by the Hahn-Kolmogorov
theorem, see [Ta2011, §1.7]) extends to a countably additive probability

measure µ̃ on the measure-theoretic completion B̃ := 〈∗B〉 of ∗B.

The measure µ̃ is a measure on ∗Rd. We push it forward to the quo-
tient space ∗Rd/O(Rd) by the obvious quotient map π : ∗Rd/Rd to obtain

a pushforward measure π∗µ̃ on the pushforward σ-algebra π∗B̃, which con-
sists of all (external) subsets E of ∗Rd/O(Rd) whose preimage π−1(E) is

measurable in B̃.
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We claim that every point in ∗Rd/O(Rd) is measurable in π∗B̃, or
equivalently that every coset x + O(Rd) in ∗Rd is measurable in B. In-
deed, this coset is the union of the countable family of (nonstandard) balls
{y ∈ ∗Rd : |x− y| < n} for n ∈ N, each one of which is a nonstandard Borel

set and thus measurable in B̃.

Because of this, we can decompose the measure π∗µ̃ into pure point and
singular components, thus

π∗µ̃ =
∑
k

ckδxk+O(Rd) + ρ

where ck are standard non-positive reals, k ranges over an at most countable
set, xk +O(Rd) are disjoint cosets in ∗Rd/O(Rd), and ρ is a finite measure

on π∗B̃ such that ∑
k

ck + ‖ρ‖ = 1

and

ρ({x+O(Rd)}) = 0

for every coset x+O(Rd).

Now we analyse the restriction of µ̃ to a single coset xk +O(Rd), which
has total mass ck. For any standard continuous, compactly supported func-
tion f : Rd → R, one can form the integral∫

xk+O(Rd)

∗f(x− xk) dµ̃(x).

This is a non-negative continuous linear functional, so by the Riesz repre-
sentation theorem there exists a non-negative Radon measure νk on Rd such
that ∫

xk+O(Rd)

∗f(x− xk) dµ̃(x) = ck

∫
Rd

f(y) dνk(y)

for all such f . As xk+O(Rd) has total mass ck, νk is a probability measure.
From definition of µ̃, we thus have∫

∗Rd

∗f(x− xk) dµ(x) = ck

∫
Rd

f(y) dνk(y) + o(1)

for all f .

We have

µ(B(xk, R)) ≤ ck + o(1)

for every standard R, and thus by the overspill principle there exists an
unbounded Rk for which

µ(B(xk, Rk)) ≤ ck + o(1);
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since µ(xk +O(Rd)) = ck, we thus have

µ(B(xk, Rk)) = ck + o(1);

If we set ckν̃k to be the restriction of τ−xkµ to B(0, Rk), we thus see that∫
∗Rd

∗f(x) dν̃k(y) =

∫
Rd

f(y) dνk(y) + o(1)

for all test functions f . Writing ν̃k as the ultralimit of probability measures
ν̃k,n, we thus see (upon passing to a subsequence) that ν̃k,k converges vaguely
to the probability measure νk, and is in particular tight.

For any standard K ≥ 1, we can write

µ =
K∑
k=1

ckτxkνk + ρK

where ρK is a finite measure. Letting ρ̃K be the Loeb extension of the
standard part of ρK , we see that ρ̃K assigns zero mass to xk + O(Rd) for
k ≤ K and assigns a mass of at most supk>K ck to any other coset of O(Rd).
This implies that

ρ̃K(B(x,R)) ≤ sup
k>K

ck + o(1)

for any standard R. Expressing ρK as an ultralimit of ρK,n, we then obtain
the claim.



Chapter 5

Partial differential
equations

5.1. Quasilinear well-posedness

When solving the initial value problem to an ordinary differential equation,
such as

(5.1) ∂tu = F (u); u(0) = u0,

where u : R → V is the unknown solution (taking values in some finite-
dimensional vector space V ), u0 ∈ V is the initial datum, and F : V →
V is some nonlinear function (which we will take to be smooth for sake
of argument), then one can construct a solution locally in time via the
Picard iteration method . There are two basic ideas. The first is to use the
fundamental theorem of calculus to rewrite the initial value problem (5.1)
as the problem of solving an integral equation,

(5.2) u(t) = u0 +

∫ t

0
F (u(s)) ds.

The second idea is to solve this integral equation by the contraction mapping
theorem, showing that the integral operator N defined by

N (u)(t) := u0 +

∫ t

0
F (u(s)) ds

is a contraction on a suitable complete metric space (e.g. a closed ball in the
function space C0([0, T ];V )), and thus has a unique fixed point in this space.
This method works as long as one only seeks to construct local solutions (for

181



182 5. Partial differential equations

time t in [0, T ] for sufficiently small T > 0), but the solutions constructed
have a number of very good properties, including

(1) Local existence: A solution u exists in the space C0([0, T ];V )
(and even in C∞([0, T ];V )) for T sufficiently small.

(2) Uniqueness: There is at most one solution u to the initial value
problem in the space C0([0, T ];V ) (or in smoother spaces, such as
C∞([0, T ];V )). (For solutions in the weaker space C0([0, T ];V ) we
use the integral formulation (5.2) to define the solution concept.)

(3) Lipschitz continuous dependence on the data: If u
(n)
0 is a se-

quence of initial data converging to u0, then the associated solutions
u(n) converge uniformly to u on [0, T ] (possibly after shrinking T

slightly). In fact we have the Lipschitz bound ‖u(n)(t)− u(t)‖V ≤
C‖u(n)

0 − u0‖V for n large enough and t ∈ [0, T ], where C is an
absolute constant.

This package of properties is referred to as (local Lipschitz) wellposedness.

This method extends to certain partial differential equations, particularly
those of a semilinear nature (linear except for lower order nonlinear terms).
For instance, if trying to solve an initial value problem of the form

∂tu+ Lu = F (u); u(0, x) = u0(x),

where now u : R → V takes values in a function space V (e.g. a Sobolev
space Hk(Rd)), u0 ∈ V is an initial datum, L is some (differential) operator
(independent of u) that is (densely) defined on V , and F is a nonlinearity
which is also (densely) defined on V , then (formally, at least) one can solve
this problem by using Duhamel’s formula to convert the problem to that of
solving an integral equation

u(t) = e−tLu0 +

∫ t

0
e−(t−s)LF (u(s)) ds

and one can then hope to show that the associated nonlinear integral oper-
ator

u 7→ e−tLu0 +

∫ t

0
e−(t−s)LF (u(s)) ds

is a contraction in a subset of a suitably chosen function space.

This method turns out to work surprisingly well for many semilinear par-
tial differential equations, and in particular for semilinear parabolic, semi-
linear dispersive, and semilinear wave equations. As in the ODE case, when
the method works, it usually gives the entire package of Lipschitz well-
posedness: existence, uniqueness, and Lipschitz continuous dependence on
the initial data, for short times at least.
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However, when one moves from semilinear initial value problems to
quasilinear initial value problems such as

∂tu+ Luu = F (u); u(0, x) = u0(x)

in which the top order operator Lu now depends on the solution u itself, then
the nature of well-posedness changes; one can still hope to obtain (local)
existence and uniqueness, and even continuous dependence on the data,
but one usually is forced to give up Lipschitz continuous dependence at
the highest available regularity (though one can often recover it at lower
regularities). As a consequence, the Picard iteration method is not directly
suitable for constructing solutions to such equations.

One can already see this phenomenon with a very simple equation,
namely the one-dimensional constant-velocity transport equation

(5.3) ∂tu+ c∂xu = 0; u(0, x) = u0(x)

where we consider c = c0 as part of the initial data. (If one wished, one
could view this equation as a rather trivial example of a system, namely

∂tu+ c∂xu = 0

∂tc = 0

u(0, x) = u0(x);

c(0) = c0,

to emphasise this viewpoint, but this would be somewhat idiosyncratic.)
One can solve this equation explicitly of course to get the solution

u(t, x) = u0(x− ct).

In particular, if we look at the solution just at time t = 1 for simplicity, we
have

u(1, x) = u0(x− c).
Now let us see how this solution u(1, x) depends on the parameter c. One
can ask whether this dependence is Lipschitz in c, in some function space
V :

‖u0(· − c)− u0(· − c′)‖V ≤ A|c− c′|
for some finite A. But using the Newton approximation

u0(· − c)− u0(· − c′) ≈ (c− c′)∂xu0(· − c)

we see that we should only expect such a bound when ∂xu0 (and its trans-
lates) lie in V . Thus, we see a loss of derivatives phenomenon with regard
to Lipschitz well-posedness; if the initial data u0 is in some regularity space,
say C3, then one only obtains Lipschitz dependence on c in a lower regularity
space such as C2.
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We have just seen that if all one knows about the initial data u0 is that it
is bounded in a function space V , then one usually cannot hope to make the
dependence of u on the velocity parameter c Lipschitz continuous. Indeed,
one cannot even make it uniformly continuous1 in V . Given two values of
c that are close together, e.g. c = 0 and c = ε, and a reasonable function
space V (e.g. a Sobolev space Hk, or a classical regularity space Ck) one can
easily cook up a function u0 that is bounded in V but whose two solutions
u0(·) and u0(· − ε) separate in the V norm at time 1, simply by choosing u0

to be supported on an interval of width ε.

On the other hand, one still has non-uniform continuous dependence
on the initial parameters: if u0 lies in some reasonable function space V ,
then the map c 7→ u0(· − c) is continuous2 in the V topology, even if it is
not uniformly continuous with respect to v0. The reason for this is that we
already have established this continuity in the case when u0 is so smooth
that an additional derivative of u0 lies in V ; and such smooth functions
tend to be dense in the original space V , so the general case can then be
established by a limiting argument, approximating a general function in V
by a smoother function. We then see that the non-uniformity ultimately
comes from the fact that a given function in V may be arbitrarily rough (or
concentrated at an arbitrarily fine scale), and so the ability to approximate
such a function by a smooth one can be arbitrarily poor.

In many quasilinear PDE, one often encounters qualitatively similar phe-
nomena. Namely, one often has local well-posedness in sufficiently smooth
function spaces V (so that if the initial data lies in V , then for short times
one has existence, uniqueness, and continuous dependence on the data in the
V topology), but Lipschitz or uniform continuity in the V topology is usually
false. However, if the data (and solution) is known to be in a high-regularity
function space V , one can often recover Lipschitz or uniform continuity in
a lower-regularity topology.

Because the continuous dependence on the data in quasilinear equa-
tions is necessarily non-uniform, the arguments needed to establish this de-
pendence can be remarkably delicate. As with the simple example of the
transport equation, the key is to approximate a rough solution by a smooth
solution first, by smoothing out the data (this is the non-uniform step, as it

1Part of the problem here is that using a subtractive method ‖u− v‖V to determine the dis-
tance between two solutions u, v is not a physically natural operation when transport mechanisms

are present that could cause the key features of u, v (such as singularities) to be situated in slightly

different locations. In such cases, the correct notion of distance may need to take transport into
account, e.g. by using metrics such as the Wasserstein metric.

2More succinctly: translation is a continuous but not uniformly continuous operation in most
function spaces.
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depends on the physical scale (or wavelength) that the data features are lo-
cated). But for quasilinear equations, keeping the rough and smooth solution
together can require a little juggling of function space norms, in particular
playing the low-frequency nature of the smooth solution against the high-
frequency nature of the residual between the rough and smooth solutions.

In this section I will illustrate this phenomenon with one of the sim-
plest quasilinear equations, namely the initial value problem for the inviscid
Burgers’ equation

(5.4) ∂tu+ uux = 0; u(0, x) = u0(x)

which is a modification of the transport equation (5.3) in which the velocity
c is no longer a parameter, but now depends (and is, in this case, actually
equal to) the solution. To avoid technicalities we will work only with the
classical function spaces Ck of k times continuously differentiable functions,
though one can certainly work with other spaces (such as Sobolev spaces)
by exploiting the Sobolev embedding theorem. To avoid having to distinguish
continuity from uniform continuity, we shall work in a compact domain by
assuming periodicity in space, thus for instance restricting x to the unit
circle R/Z.

This discussion is inspired by the survey article [Tz2006] of Tzvetkov,
which further explores the distinction between well-posedness and ill-posedness
in both semilinear and quasilinear settings.

5.1.1. A priori estimates. To avoid technicalities let us make the a priori
assumption that all solutions of interest are smooth.

The Burgers equation is a pure transport equation: it moves the solution
u around, but does not increase or decrease its values. As a consequence we
obtain an a priori estimate for the C0 norm:

‖u(t)‖C0 ≤ ‖u(0)‖C0 .

To deal with the C1 norm, we perform the standard trick of differenti-
ating the equation, obtaining

∂tux + uuxx + u2
x = 0

which we rewrite as a forced transport equation

(∂t + u∂x)ux = −u2
x.

Inspecting what this equation does at local maxima in space, one is led
(formally, at least) to the differential inequality

∂t‖ux‖C0 ≤ ‖ux‖2C0

which leads to an a priori estimate of the form

(5.5) ‖u(t)‖C1 ≤ C‖u(0)‖C1
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for some absolute constant C, if t is sufficiently small depending on ‖u(0)‖C1 .
More generally, the same arguments give

‖u(t)‖Ck ≤ Ck‖u(0)‖Ck
for k = 1, 2, 3, . . ., where Ck depends only on k, and t is sufficiently small
depending on3 ‖u(0)‖Ck .

Remark 5.1.1. One can also obtain similar a priori estimates for the
Sobolev scale of spaces Hk by using differentiation under the integral sign,
follows by integration by parts; this is an example of the energy method,
which we will not elaborate further upon here.

The a priori estimates are not quite enough by themselves to establish
local existence of solutions in the indicated function spaces, but in practice,
once one has a priori estimates, one can usually work a little bit harder to
then establish existence, for instance by using a compactness, viscosity, or
penalty method. We will not discuss this topic here.

5.1.2. Lipschitz continuity at low regularity. Now let us consider two
solutions u, v to Burgers’ equation from two different initial data, thus

(5.6) ∂tu+ uux = 0; u(0) = u0

and

(5.7) ∂tv + vvx = 0; v(0) = v0.

We want to say that if u0 and v0 are close in some sense, then u and v
will stay close at later times. For this, the standard trick is to look at the
difference w := v − u of the two solutions. Subtracting (5.6) from (5.7) we
obtain the difference equation for w:

(5.8) ∂tw + vwx + wux = 0; w(0) = w0 := v0 − u0.

We can view the evolution equation in (5.8) as a forced transport equation:

(∂t + v∂x)w = −wux.
This leads to a bound for how the C0 norm of w grows:

∂t‖w‖C0 ≤ ‖wux‖C0 ≤ ‖w‖C0‖u‖C1 .

Applying Gronwall’s inequality, one obtains the a priori inequality

‖w(t)‖C0 ≤ ‖w0‖C0 exp(

∫ t

0
‖u(s)‖C1 ds)

and hence by (5.5) we have

(5.9) ‖u(t)− v(t)‖C0 ≤ ‖u0 − v0‖C0 exp(C‖u0‖C1)

3Actually, if one works a little more carefully, one only needs t sufficiently small depending
on ‖u(0)‖C1 .
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if t is sufficiently small (depending on the C1 norm of u0). Thus we see that
we have Lipschitz dependence in the C0 topology... but only if at least one
of the two solutions u, v already had one higher derivative of regularity (i.e.
one of u, v was in C1 and not just in C0).

More generally, by using the trick of differentiating the equation, one
can obtain an a priori inequality of the form

‖u(t)− v(t)‖Ck ≤ ‖u0 − v0‖Ck exp(Ck‖u0‖Ck+1)

for some Ck depending only on k, for t sufficiently small depending on
‖u0‖Ck+1 . Once again, to get Lipschitz continuity at some regularity Ck,
one must first assume one higher degree Ck+1 of regularity on one of the
solutions.

This loss of derivatives is unfortunate, but this is at least good enough
to recover uniqueness: setting u0 = v0 in, say, (5.9) we obtain uniqueness of
C1 solutions (locally in time, at least), thanks to the trivial fact that two
C1 functions that agree in C0 norm automatically agree in C1 norm also.
One can then boost local uniqueness to global uniqueness by a standard
continuity argument which we omit.

5.1.3. Non-uniform continuity at high regularity. Let u
(n)
0 be a se-

quence of C1 data converging in the C1 topology to a limit u0 ∈ C1. As u0

and u
(n)
0 are then uniformly bounded in C1, existence theory then gives us

C1 solutions u(n), u to the associated initial value problems

(5.10) ∂tu+ uux = 0; u(0) = u0

and

(5.11) ∂tu
(n) + u(n)u(n)

x = 0; u(n)(0) = u
(n)
0

for all t in some uniform time interval [0, T ].

From (5.5) we know that the u(n) and u are uniformly bounded in C1

norm (for T small enough). From the Lipschitz continuity (5.9) we know

that u(n) converges to u in C0 norm. But does u(n) converge to u in the C1

norm?

The answer is yes, but the proof is remarkably delicate. A direct attempt
to control the difference between u(n) and u in C1, following the lines of the
previous argument, requires something to be bounded in C2. But we only
have u(n) and u bounded in C1.

However, note that in the arguments of the previous section, we don’t
need both solutions to be in C2; it’s enough for just one solution to be in
C2. Now, while neither u(n) nor u are bounded in C2 yet, what we can do is
to introduce a third solution v, which is regularised to lie in C2 and not just

in C1, while still being initially close to u0 and hence to u
(n)
0 in C1 norm.
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The hope is then to show that u and u(n) are both close to v in C1, which
by the triangle inequality will make u and u(n) close to each other.

Unfortunately, in order to get the regularised solution v close to u0

initially, the C2 norm of v(0) (and hence of v) may have to be quite large.
But we can compensate for this by making the C0 distance between v(0)
and u0 quite small. The two effects turn out to basically cancel each other
and allow one to proceed.

Let’s see how this is done. We will use an argument of Bona and Smith
[BoSm1975]. Consider a solution v which is initially close to u0 in C1 norm
(and very close in C0 norm), and also has finite (but potentially large) C2

norm; we will quantify these statements more precisely later.

Once again, we set w = v − u and w0 = v0 − u0, giving a difference
equation which we now write as

(5.12) ∂tw + uwx + wvx = 0; w(0) = w0

in order to take advantage of the higher regularity of v. For the C0 norm,
we have

(5.13) ‖w(t)‖C0 = O(‖w0‖C0)

for t sufficiently small, thanks (5.9) and the uniform C1 bounds. For the C1

norm, we first differentiate (5.12) to obtain

(∂t + u∂x)wx = −uxwx − wxvx − wvxx
and thus

∂t‖wx‖C0 ≤ ‖uxwx‖C0 + ‖wxvx‖C0 + ‖wvxx‖C0 .

The first two terms on the RHS are O(‖wx‖C0) thanks to the uniform C1

bounds. The third term is O(‖w0‖C0‖v0‖C2) by (5.13) and a priori C2

estimates (here we use the fact that the time of existence for C2 bounds can
be controlled by the C1 norm). Using Gronwall’s inequality, we conclude
that

‖wx(t)‖C0 � ‖∂xw0‖C0 + ‖w0‖C0‖v0‖C2

and thus

‖v(t)− u(t)‖C1 � ‖v0 − u0‖C1 + ‖v0 − u0‖C0‖v0‖C2 .

Similarly one has

‖v(t)− u(n)(t)‖C1 � ‖v0 − u(n)
0 ‖C1 + ‖v0 − u(n)

0 ‖C0‖v0‖C2 ,

and so by the triangle inequality we have

(5.14) ‖u(n)(t)− u(t)‖C1 � ‖v0 − u0‖C1 + ‖v0 − u0‖C0‖v0‖C2

for n sufficiently large.
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Note how the C2 norm in the second term is balanced by the C0 norm.
We can exploit this balance as follows. Let ε > 0 be a small quantity, and let
v0 := u0 ∗Pε, where Pε = 1

εP (xε ) is a suitable approximation to the identity.

A little bit of integration by parts using the C1 bound on u0 then gives the
bounds

‖v0 − u0‖C0 � ε

and

‖v0 − u0‖C1 � 1

and

‖v0‖C2 �
1

ε
.

This is not quite enough to get anything useful out of (5.14). But to do
better, we can use the fact that ∂xu0, being uniformly continuous, has some
modulus of continuity, thus one has

‖∂xu0(·+ t)− ∂xu0(·)‖C0 = o(1)

as t→ 0. Using this, one can soon get the improved estimates

‖v0 − u0‖C0 = o(ε)

and

‖v0 − u0‖C1 = o(1)

as ε→ 0. Applying (5.14), we thus see that

‖u(n)(t)− u(t)‖C1 � o(1)

for n sufficiently large, and the continuity claim follows.

5.2. A type diagram for function spaces

In harmonic analysis and PDE, one often wants to place a function f : Rd →
C on some domain (let’s take a Euclidean space Rd for simplicity) in one or
more function spaces in order to quantify its “size” in some sense. Examples
include

(1) The Lebesgue spaces Lp of functions f whose norm ‖f‖Lp := (
∫
Rd |f |p)1/p

is finite, as well as their relatives such as the weak Lp spaces Lp,∞

(and more generally the Lorentz spaces Lp,q) and Orlicz spaces such
as L logL and eL;

(2) The classical regularity spaces Ck, together with their Hölder con-
tinuous counterparts Ck,α;

(3) The Sobolev spaces W s,p of functions f whose norm ‖f‖W s,p =
‖f‖Lp+‖|∇|sf‖Lp is finite (other equivalent definitions of this norm
exist, and there are technicalities if s is negative or p 6∈ (1,∞)), as
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well as relatives such as homogeneous4 Sobolev spaces Ẇ s,p, Besov
spaces Bs,p

q , and Triebel-Lizorkin spaces F s,pq ;

(4) Hardy spaces Hp, the space BMO of functions of bounded mean
oscillation (and the subspace VMO of functions of vanishing mean
oscillation);

(5) The Wiener algebra A;

(6) Morrey spaces Mp
q ;

(7) The space M of finite measures;

(8) etc., etc.

As the above partial list indicates, there is an entire zoo of function spaces
one could consider, and it can be difficult at first to see how they are organ-
ised with respect to each other. However, one can get some clarity in this
regard by drawing a type diagram for the function spaces one is trying to
study. A type diagram assigns a tuple (usually a pair) of relevant exponents
to each function space. For function spaces X on Euclidean space, two such
exponents are the regularity s of the space, and the integrability p of the
space. These two quantities are somewhat fuzzy in nature (and are not eas-
ily defined for all possible function spaces), but can basically be described
as follows. We test the function space norm ‖f‖X of a modulated rescaled
bump function (or “wave packet”)

(5.15) f(x) := Aeix·ξφ(
x− x0

R
)

where A > 0 is an amplitude, R > 0 is a radius, φ ∈ C∞c (Rd) is a test
function, x0 is a position, and ξ ∈ Rd is a frequency of some magnitude
|ξ| ∼ N . One then studies how the norm ‖f‖X depends on the parameters
A,R,N . Typically, one has a relationship of the form

(5.16) ‖f‖X ∼ AN sRd/p

for some exponents s, p, at least in the high-frequency case when N is large
(in particular, from the uncertainty principle it is natural to require N �
1/R, and when dealing with inhomogeneous norms it is also natural to
require N � 1). The exponent s measures how sensitive the X norm is
to oscillation, and thus controls regularity; if s is large, then oscillating
functions will have large X norm, and thus functions in X will tend not to
oscillate too much and thus be smooth. Similarly, the exponent p measures
how sensitive the X norm is to the function f spreading out to large scales;
if p is small, then slowly decaying functions will have large norm, so that
functions in X tend to decay quickly; conversely, if p is large, then singular

4The conventions for the superscripts and subscripts here are highly variable, and vary from
text to text.
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functions will tend to have large norm, so that functions in X will tend to
not have high peaks.

Note that the exponent s in (5.16) could be positive, zero, or negative,
however the exponent p should be non-negative, since intuitively enlarging
R should always lead to a larger (or at least comparable) norm. Finally,
the exponent in the A parameter should always be 1, since norms are by
definition homogeneous. Note also that the position x0 plays no role in (1);
this reflects the fact that most of the popular function spaces in analysis are
translation-invariant.

The type diagram in Figure 1 plots the s, 1/p indices of various spaces.
The black dots indicate those spaces for which the s, 1/p indices are fixed;
the blue dots are those spaces for which at least one of the s, 1/p indices
are variable (and so, depending on the value chosen for these parameters,
these spaces may end up in a different location on the type diagram than
the typical location indicated here).

Remark 5.2.1. There are some minor cheats in this diagram, for instance
for the Orlicz spaces L logL and eL one has to adjust (5.15) by a logarith-
mic factor. Also, the norms for the Schwartz space S are not translation-
invariant and thus not perfectly describable by this formalism. This picture
should be viewed as a visual aid only, and not as a genuinely rigorous math-
ematical statement. This type of diagram is also known as a de Vore-Triebel
diagram.

The type diagram can be used to clarify some of the relationships be-
tween function spaces, such as Sobolev embedding. For instance, when
working with inhomogeneous spaces (which basically identifies low frequen-
cies N � 1 with medium frequencies N ∼ 1, so that one is effectively always
in the regime N � 1), then decreasing the s parameter results in decreasing
the right-hand side of (5.15). Thus, one expects the function space norms
to get smaller (and the function spaces to get larger) if one decreases s while
keeping p fixed. Thus, for instance, W k,p should be contained in W k−1,p,
and so forth. Note however that this inclusion is not available for homoge-
neous function spaces such as Ẇ k,p, in which the frequency parameter N
can be either much larger than 1 or much smaller than 1.

Similarly, if one is working in a compact domain rather than in Rd, then
one has effectively capped the radius parameter R to be bounded, and so
we expect the function space norms to get smaller (and the function spaces
to get larger) as one increases 1/p, thus for instance L2 will be contained in
L1. Conversely, if one is working in a discrete domain5 such as Zd, then the

5If the domain is both compact and discrete, then it is finite, and on a finite-dimensional
space all norms are equivalent.
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Figure 1. Function space type diagram.

radius parameter R has now effectively been bounded from below, and the
reverse should occur: the function spaces should get larger as one decreases
1/p.

As mentioned earlier, the uncertainty principle suggests that one has
the restriction N � 1/R. From this and (5.16), we expect to be able to
enlarge the function space by trading in the regularity parameter s for the
integrability parameter p, keeping the dimensional quantity d/p − s fixed.
This is indeed how Sobolev embedding works. Note in some cases one runs
out of regularity before p goes all the way to infinity (thus ending up at an
Lp space), while in other cases p hits infinity first. In the latter case, one
can embed the Sobolev space into a Holder space such as Ck,α.

On continuous domains, one can send the frequency N off to infinity,
keeping the amplitude A and radius R fixed. From this and (5.15) we see
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that norms with a lower regularity s can never hope to control norms with a
higher regularity s′ > s, no matter what one does with the integrability pa-
rameter. Note however that in discrete settings this obstruction disappears;
when working on, say, Zd, then in fact one can gain as much regularity as
one wishes for free, and there is no distinction between a Lebesgue space `p

and their Sobolev counterparts W k,p in such a setting.

When interpolating between two spaces (using either the real or com-
plex interpolation method), the interpolated space usually6 has regularity
and integrability exponents on the line segment between the corresponding
exponents of the endpoint spaces. Typically, one can control the norm of
the interpolated space by the geometric mean of the endpoint norms that is
indicated by this line segment; again, this is plausible from looking at (5.16).

The space L2 is self-dual. More generally, the dual of a function space X
will generally have type exponents that are the reflection of the original ex-
ponents around the L2 origin; consider for instance the dual spaces Hs, H−s

or H1,BMO in the above diagram.

Spaces whose integrability exponent p is larger than 1 (i.e. which lie to
the left of the dotted line) tend to be Banach spaces, while spaces whose
integrability exponent is less than 1 are almost never7 Banach spaces. The
case p = 1 is borderline; some spaces at this level of integrability, such as
L1, are Banach spaces, while other spaces, such as L1,∞, are not.

While the regularity s and integrability p are usually the most important
exponents in a function space (because amplitude, width, and frequency are
usually the most important features of a function in analysis), they do not
tell the entire story. One major reason for this is that the modulated bump
functions (5.15), while an important class of test examples of functions, are
by no means the only functions that one would wish to study. For instance,
one could also consider sums of bump functions (5.15) at different scales.
The behaviour of the function space norms on such spaces is often controlled
by secondary exponents, such as the second exponent q that arises in Lorentz
spaces, Besov spaces, or Triebel-Lizorkin spaces. For instance, consider the
function

(5.17) fM (x) :=

M∑
m=1

2−mdφ(x/2m),

where M is a large integer, representing the number of distinct scales present
in fM . Any function space with regularity s = 0 and p = 1 should assign

6This can be heuristically justified from the formula (5.16) by thinking about how the real
or complex interpolation methods actually work, as discussed for instance in [Ta2010, §1.11].

7This can be justified by covering a large ball into small balls and considering how (5.15)
would interact with the triangle inequality in this case.
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each summand 2−mdφ(x/2m) in (5.17) a norm of O(1), so the norm of fM
could be as large as O(M) if one assumes the triangle inequality. This is
indeed the case for the L1 norm, but for the weak L1 norm, i.e. the L1,∞

norm, fM only has size O(1). More generally, for the Lorentz spaces L1,q,

fM will have a norm of about O(M1/q). Thus we see that such secondary
exponents can influence the norm of a function by an amount which is
polynomial in the number of scales. In many applications, though, the
number of scales is a “logarithmic” quantity and thus of lower order interest
when compared against the “polynomial” exponents such as s and p. So the
fine distinctions between, say, strong L1 and weak L1, are only of interest
in “critical” situations in which one cannot afford to lose any logarithmic
factors (this is for instance the case in much of Calderon-Zygmund theory).

We have cheated somewhat by only working in the high frequency regime.
When dealing with inhomogeneous spaces, one often has a different set of
exponents for (5.15) in the low-frequency regime than in the high-frequency
regime. In such cases, one sometimes has to use a more complicated type
diagram to genuinely model the situation, e.g. by assigning to each space
a convex set of type exponents rather than a single exponent, or perhaps
having two separate type diagrams, one for the high frequency regime and
one for the low frequency regime. Such diagrams can get quite complicated,
and will probably not be much use to a beginner in the subject, though in
the hands of an expert who knows what he or she is doing, they can still be
an effective visual aid.

5.3. Amplitude-frequency dynamics for semilinear dispersive
equations

Semilinear dispersive and wave equations, of which the defocusing nonlinear
wave equation

(5.18) −∂ttu+ ∆u = |u|p−1u

is a typical example (where p > 1 is a fixed exponent, and u : R1+n → R is
a scalar field), can be viewed as a “tug of war” between a linear dispersive
equation, in this case the linear wave equation

(5.19) −∂ttu+ ∆u = 0

and a nonlinear ODE, in this case the equation

(5.20) −∂ttu = |u|p−1u.

If the nonlinear term was not present, leaving only the dispersive equa-
tion (5.19), then as the term “dispersive” suggests, in the asymptotic limit
t → ∞, the solution u(t, x) would spread out in space and decay in ampli-
tude. For instance, in the model case when d = 3 and the initial position
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u(0, x) vanishes (leaving only the initial velocity ut(0, x) as non-trivial initial
data), the solution8 u(t, x) for t > 0 is given by the formula

u(t, x) =
1

4πt

∫
|y−x|=t

ut(0, y) dσ

where dσ is surface measure on the sphere {y ∈ R3 : |y − x| = t}. Thus, if
the initial velocity was bounded and compactly supported, then the solution
u(t, x) would be bounded by O(1/t) and would thus would decay uniformly
to zero as t→∞. Similar phenomena occur for all dimensions greater than
1.

Conversely, if the dispersive term was not present, leaving only the ODE
(5.20), then one no longer expects decay; indeed, given the conserved energy
1
2u

2
t + 1

p+1 |u|
p+1 for the ODE (5.20), we do not expect any decay at all (and

indeed, solutions are instead periodic in time for each fixed x, as can easily
be seen by viewing the ODE (and the energy curves) in phase space).

Depending on the relative “size” of the dispersive term ∆u and the
nonlinear term |u|p−1u, one can heuristically describe the behaviour of a
solution u at various positions at times as either being dispersion dominated
(in which |∆u| � |u|p), nonlinearity dominated (in which |u|p � |∆u|),
or contested (in which |∆u|, |u|p are comparable in size). Very roughly
speaking, when one is in the dispersion dominated regime, then perturbation
theory becomes effective, and one can often show that the solution to the
nonlinear equation indeed behaves like the solution to the linear counterpart,
in particular exhibiting decay as t→∞. In principle, perturbation theory is
also available in the nonlinearity dominated regime (in which the dispersion
is now viewed as the perturbation, and the nonlinearity as the main term),
but in practice this is often difficult to apply (due to the nonlinearity of the
approximating equation and the large number of derivatives present in the
perturbative term), and so one has to fall back on non-perturbative tools,
such as conservation laws and monotonicity formulae. The contested regime
is the most interesting, and gives rise to intermediate types of behaviour
that are not present in the purely dispersive or purely nonlinear equations,
such as solitary wave solutions (solitons) or solutions that blow up in finite
time.

In order to analyse how solutions behave in each of these regimes rigor-
ously, one usually works with a variety of function spaces (such as Lebesgue
spaces Lp and Sobolev spaces Hs). As such, one generally needs to first
establish a number of function space estimates (e.g. Sobolev inequalities,

8To avoid technical issues, let us restrict attention in this section to classical (smooth)
solutions.
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Hölder-type inequalities, Strichartz estimates, etc.) in order to study these
equations at the formal level.

Unfortunately, this emphasis on function spaces and their estimates can
obscure the underlying physical intuition behind the dynamics of these equa-
tions, and the field of analysis of PDE sometimes acquires a reputation for
being unduly technical as a consequence. However, as noted in Section 5.2,
one can view function space norms as a way to formalise the intuitive no-
tions of the “height” (amplitude) and “width” (wavelength) of a function
(wave).

It turns out that one can similarly analyse the behaviour of nonlinear
dispersive equations on a similar heuristic level, as that of understanding the
dynamics as the amplitude A(t) and wavelength 1/N(t) (or frequency N(t))
of a wave. Below the fold I give some examples of this heuristic; for sake
of concreteness I restrict attention to the nonlinear wave equation (5.18),
though one can of course extend this heuristic to many other models also.
Rigorous analogues of the arguments here can be found in several places,
such as the [ShSt1998] or [Ta2006b].

5.3.1. Bump functions. To initiate the heuristic analysis, we make the
assumption that any given time t, the wave u(t, x) “resembles” (or is “dom-
inated” by) a bump function

(5.21) u(t, x) ≈ A(t)eiθ(t)φ(N(t)(x− x(t)))

of some amplitude A(t) > 0, some phase θ(t) ∈ R, some frequency N(t) >
0, and some position x(t) ∈ Rd, where φ is a bump function. We will
leave the terms “resembles” and “dominated” deliberately vague; u(t, x)
might not consist entirely of this bump function, but could instead be a
superposition of multiple components, with this bump function being the
“strongest” of these components in some sense. It is of course possible for
a solution to concentrate its mass and energy in a different configuration
than a bump function; but experience has shown that the most nonlinear
behaviour tends to occur when such a concentration occurs, and so this
ansatz is expected to capture the “worst-case” behaviour of the solution9.
In particular, this type of bump function dominance is often seen when
the solution exhibits soliton or near-soliton like behaviour, and often occurs
shortly prior to blowup (especially for equations with critical nonlinearity).
There are a variety of tools to formalise these sorts of intuitions, such as
concentration-compactness and the induction-on-energy method, but we will
not focus on these tools here.

9Basically, if a wave splits its energy into too many distinct components, then the nonlinear
effects of each component become quite weak, even when superimposed back together again.
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Remark 5.3.1. One can also refine the above ansatz in a number of ways,
for instance by also introducing a frequency modulation eix·ξ(t), which is
particularly important in models such as the mass-critical NLS which admit
a frequency modulation symmetry, but for simplicity we will not consider
this more complicated situation here.

For this analysis, we shall ignore the role of the phase φ(t) and position
x(t), focusing instead on the amplitude A(t) and frequency N(t). This
collapses the infinite numbers of degrees of freedom for the wave u(t) down
to just two degrees of freedom. Of course, there is a significant amount
of information lost when performing this collapse - in particular, the exact
PDE (5.18) will no longer retain its deterministic form when projected to
these two coordinates - but one can still discern non-trivial features of the
original dynamics from this two-dimensional viewpoint.

With the ansatz (5.21), the solution u(t, x) has magnitude comparable
A(t) to a ball of radius roughly 1/N(t). As a consequence, the nonlinear-
ity |u|p−1u will have magnitude about A(t)p on this ball. Meanwhile, the
dispersive term ∆u would be expected to have magnitude about A(t)N(t)2

(using a crude “rise-over-run” interpretation of the derivative, or else just
computing the Laplacian of (5.21) explicitly). We thus expect dispersion
dominant behaviour when A(t)N(t)2 � A(t)p, or in other words when

(5.22) A(t)� N(t)2/(p−1),

nonlinearity dominant behaviour when A(t)N(t)2 � A(t)p, or in other
words when

(5.23) A(t)� N(t)2/(p−1),

and contested behaviour when A(t)N(t)2 is comparable to A(t)p, or in other
words when

(5.24) A(t) ∼ N(t)2/(p−1).

The evolution of the parameters A(t), N(t) is partly constained by a va-
riety of conservation laws and monotonicity formulae. Consider for instance
the energy conservation law, which asserts that the energy

E =

∫
Rd

1

2
|ut|2 +

1

2
|∇u|2 +

1

p+ 1
|u|p+1 dx

is conserved in time. Inserting the ansatz (5.21) into the right-hand side,
we obtain the heuristic bound10

At(t)
2N(t)−d +A(t)2N(t)2−d +A(t)p+1N(t)−d � E.

10We only write an upper bound here for the left-hand side, and not a lower bound, to allow

for the possibility that most of the energy of the wave is not invested in the bump function (5.21),
but is instead dispersed elsewhere.



198 5. Partial differential equations

Figure 2. Supercritical amplitude-frequency dynamics.

This gives us the a priori bounds

(5.25) A(t)� E1/2N(t)(d−2)/2, E1/(p+1)N(t)d/(p+1)

and

(5.26) At(t)� E1/2N(t)d/2.

The bounds (5.25) can be viewed as describing a sort of “energy surface”
that the parameters A(t), N(t) can vary in.

It is instructive to see how these bounds interact with the criteria (5.22),
(5.23), (5.24), for various choices of dimension d and exponent p. Let us first
see what happens in a supercritical setting, such as d = 3 and p = 7, with
bounded energy E = O(1). In this case, the energy conservation law gives
the bounds

A(t)� min(N(t)1/2, N(t)3/8).

Meanwhile, the threshold between dispersive behaviour and nonlinear be-
haviour is when A(t) ∼ N(t)1/3. We can illustrate this by performing a
log-log plot between logN(t) and logA(t); see Figure 2.

The region below the dotted line corresponds to dispersion-dominated
behaviour, and the region above corresponds to nonlinearity-dominated be-
haviour. The region below the solid line corresponds to the possible values
of amplitude and frequency that are permitted by energy conservation.

This diagram illustrates that for low frequencies N(t) � 1, the energy
constraint ensures dispersive behaviour; but for high frequencies N(t)� 1,
one can venture increasingly far into the nonlinearity dominated regime
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Figure 3. Subcritical amplitude-frequency dynamics.

while still being consistent with energy conservation. In particular, en-
ergy conservation does not prevent a scenario in which the frequency and
amplitude both increase to infinity in finite time, while staying inside the
nonlinearity dominated regime. And indeed, global regularity for this su-
percritical equation is a notoriously hard open problem, analogous in many
ways to the even more famous global regularity problem for Navier-Stokes
(see [Ta2008, §2.4] for further discussion).

In contrast, let us consider a subcritical setting, such as d = 3 and p = 3,
again with bounded energy E = O(1). Now, the energy conservation law
gives the bounds

A(t)� min(N(t)1/2, N(t)3/4)

while the threshold between dispersive behaviour and nonlinear behaviour
is when A(t) ∼ N(t). The log-log plot is now illustrated in Figure 3.

We now see that for high frequencies N(t) � 1, the energy constraint
ensures dispersive behaviour; but conversely, for low frequencies N(t) � 1,
one can have highly nonlinear behaviour. On the other hand, low frequencies
cannot exhibit finite time blowup (as can be inferred from (5.26)); however,
other non-dispersive scenarios exist, such as a soliton-type solution in which
N(t) is low-frequency but essentially constant in time, or a self-similar decay
in which N(t) and A(t) go slowly to 0 as t → ∞, while staying out of the
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Figure 4. Critical amplitude-frequency dynamics.

dispersion-dominated regime. Again, this is reflected in the known theory
for this equation for large (but finite energy) data: global regularity is known
(there is no blowup), but it is unknown whether the solution disperses like
a linear solution in the limit t→∞.

Finally, we look at a critical setting, in which d = 3 and p = 5. Here,
energy conservation gives the bounds

A(t)� min(E1/2, E1/6)N(t)1/2

and the threshold between dispersive and nonlinear behaviour is A(t) ∼
N(t)1/2. Thus, when the energy E is small, one expects only dispersive
behaviour; and when the energy is large, then both dispersive and contested
behaviour (at both high and low frequencies) are consistent with energy
conservation. The large energy case is depicted in Figure 4, with the solid
line slightly above the dashed line; in the small energy case, the positions of
the two lines are reversed.

Now, it turns out that for small energy, one indeed has global regu-
larity and scattering (for both the defocusing nonlinearity +|u|4u and the
focusing nonlinearity −|u|4u), which is consistent with the above heuristics.
For large energy, blowup can occur in the focusing case, but in the defo-
cusing case what happens is that the solution can linger in the contested
region for a finite period of time, but eventually the nonlinearity “concedes”
to the dispersion, and the solution enters the dispersion-dominated regime
and scatters. This cannot be deduced solely from energy conservation, but
requires some additional inputs.
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First, let us assume for contradiction that one never enters the dispersion-
dominated regime, but instead remains in the contested regime A(t) ∼
N(t)1/2 throughout. Then from (5.26) we see that for any time t0, the
quantities A(t) and N(t) will not change in magnitude much in the time
interval {t : t = t0 + O(1/N(t0))}. This means that one can subdivide
time into intervals I, with N(t) comparable to |I|−1 on this time interval,

and A(t) comparable to |I|−1/2. The asymptotic behaviour of the solution
is then encoded in the combinatorial structure of these intervals. For in-
stance, a soliton-like solution would correspond to a string of intervals I,
all of roughly the same size, while a finite time blowup would correspond
to a shrinking sequence of intervals converging to the blowup time, whereas
a slow decay at infinity would be represented by a sequence of intervals of
increasing length going off to infinity11.

One can also take a spacetime view instead of a temporal view, and view
the solution as a string of spacetime “bubbles”, each of which has some
lifespan I and amplitude comparable to |I|−1/2, and lives on a spacetime
cube of sidelength comparable to |I|. If the number of bubbles is finite, then
the nonlinearity eventually concedes and one has dispersive behaviour; if
instead the number of bubbles is infinite, then one has contested behaviour
that can lead either to finite time blowup or infinite time blowup (where
blowup is defined here as failure of dispersion to dominate asymptotically,
rather than formation of a singularity). While “number of bubbles” is not a
precise quantity, in the rigorous theory of the critical NLW, one uses more
quantitative expressions, such as the L8 norm∫

I×R3

|u(t, x)|8 dxdt

or variants such as ‖u‖4
L4
tL

12
x (I×R3)

, as proxies for this concept. Note that

each bubble contributes an amount comparable to unity to each of the above
expressions. This may help explain why obtaining bounds for these types
of norms is so key to establishing global regularity and scattering for this
equation.

The next ingredient is the Morawetz inequality∫
R

∫
R3

|u(t, x)|6

|x|
dxdt� E

which can be established by an integration by parts argument. This in-
equality is easiest to exploit in the model case of spherical symmetry. To be
consistent with the ansatz (5.21), we must have x(t) = 0 in this case. We

11See [Ta2006b, Chapter 5] for various depictions of these bubble evolutions.
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then have ∫
R3

|u(t, x)|6

|x|
dx� N(t)

and so ∫
R
N(t) dt� E.

Each bubble of contested dynamics contributes roughly a unit amount to
the integral on the left, and so the Morawetz inequality bounds the total
number of bubbles and thus is a mechanism for forcing dispersive behaviour
asymptotically.

In the non-spherically symmetric case, the position x(t) of the bubble
can vary. However, finite speed of propagation heuristics indicate that this
position12 cannot move faster than the speed of light, which is normalised to
be 1, thus x(t′)− x(t) = O(|t′ − t|). The Morawetz inequality then instead
gives bounds such as ∫

R
min(N(t),

1

|x(t)|
) dt� E.

In the model case when N(t) stay sroughly bounded, x(t) can only grow
at most linearly in t, and the logarithmic divergence of the integral

∫
1
t dt

at infinity then again forces the number of bubbles to be finite (but this
time the bound is exponential in the energy, rather than polynomial; see
[Na1999], [Ta2006] for further discussion).

One can extend this heuristic analysis to explain why the global regu-
larity results for the energy-critical equation can extend very slightly to the
supercritical regime, and in particular (in the spherically symmetric case)
to the logarithmically supercritical equation

−∂ttu+ ∆u = |u|4u log(2 + |u|2)

as was done in [Ta2007], [Ro2009]. This equation behaves more or less
identically to the critical NLW for low frequencies N(t) � 1, but exhibits
slightly different behaviour for high frequencies N(t) � 1. In this regime,
the dividing line between dispersive and nonlinear behaviour is now A(t) ∼
N(t)1/2 log−1/4N(t). Meanwhile, the energy bounds (assuming bounded
energy) now give

A(t)� N(t)1/2 log−1/6N(t)

12The situation is more complicated if one generalises the ansatz (5.21) to allow for the
solution u to consist of a superposition of several bump functions at several different places for each

point in time. However, for the critical equation and in the contested regime, each bump function

absorbs an amount of energy bounded from below, and so there can only be a bounded number
of such bumps existing at any given time; as such, one should morally be able to decompose

the evolution into independent “particle-like” components, each of which obeys finite speed of
propagation.
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so that there is now a logarithmically wide window of opportunity for non-
linear behaviour at high frequencies.

The energy bounds also give

At(t)� N(t)3/2

from (5.26), but we can do a little bit better if we invoke the heuristic of
equipartition of energy , which states that the kinetic portion

∫
R3

1
2 |ut|

2 dx

of the energy is roughly in balance with the potential portion
∫
R3

1
2 |∇u|

2 +

V (u) dx (where V (x) is the antiderivative of x5 log(2 + x2)). There are
several ways to make this heuristic precise; one is to start with the identity

∂t

∫
R3

uut(x) =

∫
R3

|ut|2 − |∇u|2 − |u|6 log(2 + |u|2) dx

which suggests (together with the fundamental theorem of calculus) that the
right-hand side should average out to zero after integration in time. Using
this heuristic, one is soon led to the slight improvement

At(t)� A(t)N(t) +A(t)3 log1/2N(t)

of the previous bound.

The contested regions of the evolution then break up into bubbles in
spacetime, each of which has some length and lifespan comparable to 1/N ,

and amplitude A comparable to N1/2 log−1/4N (in the high-frequency case
N � 1).

In contrast, the Morawetz inequality for this equation asserts that

(5.27)

∫
R

∫
R3

|u(t, x)|6 log(2 + |u(t, x)|2)

|x|
dxdt� 1.

In the spherically symmetric case, a bubble of length 1/N and amplitude A

with N � 1 contributes about A6N3(logA) � log−1/2N to the integral in
(5.27). This quantity goes to zero as N →∞, but very slowly; in particular,

as N increases to infinity along dyadic scales N = 2k, the sum log−1/2N
is divergent, which explains why the nonlinearity cannot sustain an infinite
chain of such bubbles13.

5.4. The Euler-Arnold equation

A (smooth) Riemannian manifold is a smooth manifold M without bound-
ary, equipped with a Riemannian metric14 g, which assigns a length |v|g(x) ∈

13It also suggests that perhaps the logarithmic supercriticality is not quite the right thresh-

old here, indeed, this threshold has recently been improved upon by Hsi-Wei Shih (private
communication).

14We use Roman font for g here, as we will need to use g to denote group elements later in
this post.
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R+ to every tangent vector v ∈ TxM at a point x ∈M , and more generally
assigns an inner product

〈v, w〉g(x) ∈ R

to every pair of tangent vectors v, w ∈ TxM at a point x ∈ M . This inner
product is assumed to symmetric, positive definite, and smoothly varying in
x, and the length is then given in terms of the inner product by the formula

|v|2g(x) := 〈v, v〉g(x).

In coordinates (and also using abstract index notation), the metric g can be
viewed as an invertible symmetric rank (0, 2) tensor gij(x), with

〈v, w〉g(x) = gij(x)viwj .

One can also view the Riemannian metric as providing a (self-adjoint)
identification between the tangent bundle TM of the manifold and the cotan-
gent bundle T ∗M ; indeed, every tangent vector v ∈ TxM is then identified
with the cotangent vector ιTM→T ∗M (v) ∈ T ∗xM , defined by the formula

ιTM→T ∗M (v)(w) := 〈v, w〉g(x).

In coordinates, ιTM→T ∗M (v)i = gij v
j .

A fundamental dynamical system on the tangent bundle (or equiva-
lently, the cotangent bundle, using the above identification) of a Riemannian
manifold is that of geodesic flow. Recall that geodesics are smooth curves
γ : [a, b]→M that minimise the length

|γ| :=
∫ b

a
|γ′(t)|g(γ(t)) dt.

There is some degeneracy in this definition, because one can reparameterise
the curve γ without affecting the length. In order to fix this degeneracy (and
also because the square of the speed is a more tractable quantity analytically
than the speed itself), it is better if one replaces the length with the energy

E(γ) :=
1

2

∫ b

a
|γ′(t)|2g(γ(t)) dt.

Minimising the energy of a parameterised curve γ turns out to be the same
as minimising the length, together with an additional requirement that the
speed |γ′(t)|g(γ(t)) stay constant in time. Minimisers (and more generally,
critical points) of the energy functional (holding the endpoints fixed) are
known as geodesic flows. From a physical perspective, geodesic flow governs
the motion of a particle that is subject to no external forces and thus moves
freely, save for the constraint that it must always lie on the manifold M .

One can also view geodesic flows as a dynamical system on the tangent
bundle (with the state at any time t given by the position γ(t) ∈ M and
the velocity γ′(t) ∈ Tγ(t)M) or on the cotangent bundle (with the state
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then given by the position γ(t) ∈M and the momentum ιTM→T ∗M (γ′(t)) ∈
T ∗γ(t)M). With the latter perspective (sometimes referred to as cogeodesic

flow), geodesic flow becomes a Hamiltonian flow, with Hamiltonian H :
T ∗M → R given as

H(x, p) :=
1

2
〈p, p〉g(x)−1 =

1

2
gij(x)pipj

where 〈, 〉g(x)−1 : T ∗xM × T ∗xM → R is the inverse inner product to 〈, 〉g(x) :
TxM × TxM → R, which can be defined for instance by the formula

〈p1, p2〉g(x)−1 = 〈ι−1
TM→T ∗M (p1), ι−1

TM→T ∗M (p2)〉g(x).

In coordinates, geodesic flow is given by Hamilton’s equations of motion

d

dt
xi = gij pj ;

d

dt
pi = −1

2
(∂i gjk(x))pjpk.

In terms of the velocity vi := d
dtx

i = gij pj , we can rewrite these equations
as the geodesic equation

d

dt
vi = −Γijkv

jvk

where

Γijk =
1

2
gim(∂k gmj +∂j gmk−∂m gjk)

are the Christoffel symbols; using the Levi-Civita connection ∇, this can be
written more succinctly as

(γ∗∇)tv = 0.

If the manifold M is an embedded submanifold of a larger Euclidean
space Rn, with the metric g on M being induced from the standard metric
on Rn, then the geodesic flow equation can be rewritten in the equivalent
form

γ′′(t) ⊥ Tγ(t)M,

where γ is now viewed as taking values in Rn, and Tγ(t)M is similarly
viewed as a subspace of Rn. This is intuitively obvious from the geometric
interpretation of geodesics: if the curvature of a curve γ contains components
that are transverse to the manifold rather than normal to it, then it is
geometrically clear that one should be able to shorten the curve by shifting
it along the indicated transverse direction. It is an instructive exercise to
rigorously formulate the above intuitive argument. This fact also conforms
well with one’s physical intuition of geodesic flow as the motion of a free
particle constrained to be in M ; the normal quantity γ′′(t) then corresponds
to the centripetal force necessary to keep the particle lying in M (otherwise
it would fly off along a tangent line to M , as per Newton’s first law). The
precise value of the normal vector γ′′(t) can be computed via the second
fundamental form as γ′′(t) = Πγ(t)(γ

′(t), γ′(t)), but we will not need this
formula here.
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In a beautiful paper from 1966, Arnold [Ar1966] observed that many
basic equations in physics, including the Euler equations of motion of a
rigid body, and also (by what is a priori a remarkable coincidence) the Eu-
ler equations of fluid dynamics of an inviscid incompressible fluid, can be
viewed (formally, at least) as geodesic flows on a (finite or infinite dimen-
sional) Riemannian manifold. And not just any Riemannian manifold: the
manifold is a Lie group (or, to be truly pedantic, a torsor of that group),
equipped with a right-invariant (or left-invariant, depending on one’s con-
ventions) metric. In the context of rigid bodies, the Lie group is the group
SE(3) = R3oSO(3) of rigid motions; in the context of incompressible fluids,
it is the group Sdiff(R3) of measure-preserving diffeomorphisms. The right-
invariance makes the Hamiltonian mechanics of geodesic flow in this context
(where it is sometimes known as the Euler-Arnold equation or the Euler-
Poisson equation) quite special; it becomes (formally, at least) completely
integrable, and also indicates (in principle, at least) a way to reformulate
these equations in a Lax pair formulation. And indeed, many further com-
pletely integrable equations, such as the Korteweg-de Vries equation, have
since been reinterpreted as Euler-Arnold flows.

From a physical perspective, this all fits well with the interpretation
of geodesic flow as the free motion of a system subject only to a physical
constraint, such as rigidity or incompressibility. (I do not know, though, of
a similarly intuitive explanation as to why the Korteweg de Vries equation
is a geodesic flow.)

One consequence of being a completely integrable system is that one has
a large number of conserved quantities. In the case of the Euler equations
of motion of a rigid body, the conserved quantities are the linear and angu-
lar momentum (as observed in an external reference frame, rather than the
frame of the object). In the case of the two-dimensional Euler equations, the
conserved quantities are the pointwise values of the vorticity (as viewed in
Lagrangian coordinates, rather than Eulerian coordinates). In higher dimen-
sions, the conserved quantity is now the (Hodge star of) the vorticity, again
viewed in Lagrangian coordinates. The vorticity itself then evolves by the
vorticity equation, and is subject to vortex stretching as the diffeomorphism
between the initial and final state becomes increasingly sheared.

The elegant Euler-Arnold formalism is reasonably well-known in some
circles (particularly in Lagrangian and symplectic dynamics, where it can
be viewed as a special case of the Euler-Poincaré formalism or Lie-Poisson
formalism respectively), but not in others; I for instance was only vaguely
aware of it until recently, and I think that even in fluid mechanics this
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perspective to the subject is not always emphasised15. I therefore have
chosen to describe some of the conclusions of Arnold’s original paper here.

In order to avoid technical issues, I will work formally, ignoring ques-
tions of regularity or integrability, and pretending that infinite-dimensional
manifolds behave in exactly the same way as their finite-dimensional coun-
terparts. In the finite-dimensional setting, it is not difficult to make all of
the formal discussion below rigorous; but the situation in infinite dimen-
sions is substantially more delicate16. However, I do not want to discuss
these analytic issues here; see [EbMa1970] for a treatment of these topics.

5.4.1. Geodesic flow using a right-invariant metric. Let G be a Lie
group. From a physical perspective, one should think of a group element
g as describing the relationship between a fixed reference observer O, and
a moving object A = gO; mathematically, one could think of A and O as
belonging to a (left)17 torsor M of G. For instance, in the case of rigid
motions, O would be the reference state of a rigid body, A would be the
current state, and g = A/O would be the element of the rigid motion group
SE(3) = R3 o SO(3) that moves O to A; M is then the configuration space
of the rigid body. Similarly, in the case of incompressible fluids, O would be
a reference state of the fluid (e.g. the initial state at time t = 0), A would
be the current state, and g ∈ SDiff(R3) would be the measure-preserving
diffeomorphism required to map the location each particle of the fluid at O
to the corresponding location of the same particle at A. Again, M would
be the configuration space of the fluid.

Once one fixes the reference observer O, one can set up a bijection be-
tween the torsor M and the group G; but one can also adopt a “coordinate-
free” perspective in which the observer O is not present, in which case one
should keep M and G distinct. Strictly speaking, the geodesic flow we will
introduce will be on M rather than on G, but for some minor notational
reasons it is convenient to fix a reference observer O in order to identify the
two objects.

Let g := TidG denote the Lie algebra of G, i.e. the tangent space of G at
the identity. This Lie algebra can be identified with the tangent space TAM
of a state A in M in two different ways: an intrinsic one that does not use a
reference observer O, and an extrinsic one which does rely on this observer.
Specifically, we have

15For a more modern treatment of these topics, see the [ArKh1998] or [MaRa1999].
16Indeed, it is a notorious open problem whether the Euler equations for incompressible fluids

even forms a global continuous flow in a reasonable topology in the first place!
17One could also work with right torsors; this would require a number of sign conventions

below to be altered.
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(1) (Intrinsic identification) If V ∈ TMA is a tangent vector to A, we
let V/A ∈ g be the associated element of the Lie algebra defined
infinitesimally as

A+ εV = (1 + εV/A)A

modulo higher order terms for infinitesimal ε, or more traditionally
by requiring γ′(0)/γ(0) = g′(0) whenever γ : R → M , g : R → G
are smooth curves such that γ(t) = g(t)γ(0). Conversely, if X ∈ g,
we let XA ∈ TMA be the tangent vector at A defined infinitesimally
as

A+ εXA = (1 + εX)A

modulo higher order terms for infinitesimal ε, or more traditionally
by requiring γ′(0) = g′(0)γ(0) whenever γ : R→M , g : R→ G are
smooth curves such that γ(t) = g(t)γ(0) (so g(0) = id). Clearly,
these two operations invert each other.

(2) (Extrinsic identification) If V ∈ TMA is a tangent vector to A, and
A = gO for some fixed reference O, we let g−1V/O ∈ g be the
element of the Lie algebra defined infinitesimally as

A+ εV = g((1 + εg−1V/O)O)

or more traditionally by requiring g−1γ′(0)/O = h′(0) whenever
γ : R→M , h : R→ G are such that γ(t) = gh(t)O and h(0) = id.

The distinction between intrinsic and extrinsic identifications is closely
related to the distinction between active and passive transformations: V/A
denotes the direction in which A must move in order to effect a change of V
in the apparent position of A relative to any observer O, whereas g−1V/O is
the (inverse of the) direction in which the reference O would move to effect
the same change in the apparent position. The two quantities are related to
each other by conjugation:

g−1V/O = g−1(V/A)g; V/A = g(g−1V/O)g−1

where we define conjugation X 7→ gXg−1 of a Lie algebra element X by a
Lie group element g in the usual manner.

If A(t) ∈ M is the state of a rigid body at time t, then A′(t)/A(t) is
the linear and angular velocity of A(t) as measured in A(t)’s current spatial
reference frame, while if A(t) = g(t)O, then g(t)−1A′(t)/O is the linear
and angular velocity of A(t) as measured in the frame of O. Similarly, if
A(t) ∈ M is the state of an incompressible fluid at time t, then A′(t)/A(t)
is the velocity field u(t) in Eulerian coordinates, while g(t)−1A′(t)/O is the
velocity field u ◦ g(t) in Lagrangian coordinates.
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The left action of G g : A 7→ gA on the torsor M induces a corresponding
action g : V → gV on the tangent bundle TM . Indeed, this action was
implicitly present in the notation g−1V/O used earlier.

Now suppose we choose a non-degenerate inner product 〈, 〉g on the Lie
algebra g. We do not assume any symmetries or invariances of this inner
product with respect to the group structure, such as conjugation invariance
(in particular, this inner product will usually not be the Cartan-Killing
form). At any rate, once we select an inner product, we can construct a
right-invariant Riemannian metric g on M by the formula

(5.28) 〈V,W 〉g(A) := 〈V/A,W/A〉g.
Because we do not require the inner product to be conjugation invariant, this
metric will usually not be bi-invariant, instead being merely right-invariant.

The quantity H(V ) := 1
2〈V, V 〉g(A) is the Hamiltonian associated to this

metric. For rigid bodies, this Hamiltonian is the total kinetic energy of
the body, which is the sum of the kinetic energy 1

2m|v|
2 of the centre of

mass, plus the rotational kinetic energy 1
2I(ω, ω) which is determined by

the moments of inertia I. For incompressible fluids, the Hamiltonian is
(up to a normalising constant) the energy 1

2

∫
R3 |u|2 = 1

2

∫
R3 |u ◦ A|2 of the

fluid, which can be computed either in Eulerian coordinates or in Lagrangian
coordinates (there are no Jacobian factors here thanks to incompressibility).

Another important object in the Euler-Arnold formalism is the bilinear
form B : g× g→ g associated to the inner product 〈, 〉, defined via the Lie
bracket and duality using the formula18

(5.29) 〈[X,Y ], Z〉 = 〈B(Z, Y ), X〉,
thus B is a partial adjoint of the Lie bracket operator. Note that this form
need not be symmetric. The importance of this form comes from the fact
that it describes the geodesic flow:

Theorem 5.4.1 (Euler-Arnold equation). Let γ : R → M be a geodesic
flow on M using the right-invariant metric g defined above, and let X(t) :=
γ′(t)/γ(t) ∈ g be the intrinsic velocity vector. Then X obeys the equation

(5.30)
d

dt
X(t) = B(X(t), X(t)).

The Euler-Arnold equation is also known as the Euler-Poincaré equa-
tion; see for instance [CeMaPeRa2003] for further discussion.

Proof. For notational reasons, we will prove this in the model case when G
is a matrix group (so that we can place G, M , and g in a common vector
space, or more precisely a common matrix space); the general case is similar

18The conventions here differ slightly from those in Arnold’s paper.
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but requires more abstract notation. We consider a variation γ(s, t) of the
original curve γ(t) = γ(s, t), and consider the first variation of the energy

∂s
1

2

∫ b

a
〈∂tγ(s, t), ∂tγ(s, t)〉g(γ(s,t)) dt

which we write using (5.28) as

∂s
1

2

∫ b

a
〈γtγ−1, γtγ

−1〉 dt.

We move the derivative inside and use symmetry to write this as∫ b

a
〈∂s(γtγ−1), γtγ

−1〉 dt

or ∫ b

a
〈∂s(γtγ−1), X〉 dt

We expand

∂s(γtγ
−1) = γtsγ

−1 − γtγ−1γsγ
−1.

Similarly

∂t(γsγ
−1) = γtsγ

−1 − γsγ−1γtγ
−1

and thus

∂s(γtγ
−1) = ∂t(γsγ

−1) + [γsγ
−1, X].

Inserting this into the first variation and integrating by parts, we obtain∫ b

a
〈[γsγ−1, X], X〉 − 〈γsγ−1, ∂tX〉 dt;

using (5.29), this is∫ b

a
〈γsγ−1, B(X,X)〉 − 〈γsγ−1, ∂tX〉 dt

and so the first variation vanishes for arbitrary choices of perturbation γs
precisely when ∂tX = B(X,X), as required. �

It is instructive to verify that the Hamiltonian H = 1
2〈X,X〉 is preserved

by this equation, as it should be. In the case of rigid motions, (5.30) is
essentially Euler’s equations of motion.

The right-invariance of the Riemannian manifold implies that the geo-
desic flow is similarly right-invariant. And this is reflected by the fact that
the Euler-Arnold equation (5.30) does not involve the position γ(t). This
position of course evolves by the equation

(5.31)
d

dt
γ = Xγ

which is just the definition of X.



5.4. The Euler-Arnold equation 211

Note that while the velocity X influences the evolution of the position γ,
the position γ does not influence the evolution of the velocity X. This is of
course a manifestation of the right-invariance of the problem. This reduction
of the flow is known as Euler-Poincaré reduction, and is essentially a basic
example of both Lagrangian reduction and symplectic reduction, in which the
symmetries of a Lagrangian or Hamiltonian evolution are used to reduce the
dimension of the dynamics while preserving the Lagrangian or Hamiltonian
structure.

We can rephrase the Euler equation in a Lax pair formulation by intro-
ducing the Cartan-Killing form

(X,Y ) := tr(ad(X) ad(Y )).

Like 〈, 〉, the Cartan-Killing form (, ) is a symmetric bilinear form on the
Lie algebra g. If we assume that the group G is semisimple (and finite-
dimensional), then this form will be non-degenerate. It obeys the identity

(5.32) ([X,Y ], Z) = −(Y, [X,Z]),

thus adjoints are automatically skew-adjoint in the Cartan-Killing form.

If the Cartan-Killing form is non-degenerate, it can be used to express
the inner product 〈, 〉 via a formula of the form

(5.33) 〈X,Y 〉 := (X,Λ−1Y )

where Λ : g → g is an invertible linear transformation which is self-adjoint
with respect to both 〈, 〉 and (, ). We then define the intrinsic momentum
M(t) of the Euler-Arnold flow γ(t) by the formula

M(t) := Λ−1X(t).

From (5.30), we see that M evolves by the equation

d

dt
M := Λ−1B(ΛM,ΛM).

But observe from (5.33), (5.29), (5.33), (5.32) that

(Λ−1B(ΛM,ΛM), Y ) = 〈B(ΛM,ΛM), Y 〉
= 〈[Y,ΛM],ΛM〉
= ([Y,ΛM],M)

= ([ΛM,M], Y )

for any test vector Y ∈ g, which by nondegeneracy implies that

Λ−1B(ΛM,ΛM) = [ΛM,M]

leading to the Lax pair form

d

dt
M = [ΛM,M]
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of the Euler-Arnold equation, known as the19 Lie-Poisson equation. In par-
ticular, the spectrum of M is invariant, or equivalently M evolves along a
single coadjoint orbit in g ≡ g∗.

By Noether’s theorem, the right-invariance of the geodesic flow should
create a conserved quantity (or moment map); as the right-invariance is
an action of the group G, the conserved quantity should take place in the
adjoint g∗. If we write γ(t) = g(t)O for some fixed observer O, then this
conserved quantity can be computed as the extrinsic momentum

(5.34) P : Y 7→ 〈X, gY g−1〉,
thus ω is the 1-form associated to X, pulled back to extrinsic coordinates.
Indeed, from (5.31) one has

∂tg = Xg

and thus

∂tg
−1 = −g−1X

and hence for any test vector Y

∂tP (Y ) = 〈Xt, gY g
−1〉+ 〈X, [X, gY g−1]〉

= 〈B(X,X), gY g−1〉 − 〈B(X,X), gY g−1〉
= 0

thanks to (5.29), and the claim follows. Using the Cartan-Killing form, the
extrinsic momentum can also be identified with g−1Mg, thus linking the
extrinsic and intrinsic momenta to each other.

5.4.2. Incompressible fluids. Now consider an incompressible fluid in
R3, whose initial state is O and whose state at any time t is given as γ(t).
One can express γ(t) = g(t)O, where g(t) ∈ Sdiff(R3) is the diffeomorphism
from R3 to itself that maps the location of each particle at O to the location
of the same particle at γ(t). As the fluid is assumed incompressible, the
diffeomorphism must be measure-preserving (and orientation preserving);
we denote the group of such special diffeomorphisms as Sdiff(R3).

The Lie algebra to the group Diff(R3) of all diffeomorphisms, is the
space of all (smooth) vector fields X : R3 → R3. The Lie algebra of the
subgroup Sdiff(R3) of measure-preserving diffeomorphisms is the space of all
divergence-free vector fields; indeed, this is one of the primary motivations
of introducing the concept of divergence of a vector field. We give both Lie
algebras the usual L2 inner product:

〈u, v〉 :=

∫
R3

u · v.

19The sign conventions here are the opposite of those in Arnold’s paper, ultimately because
I am assuming right-invariance instead of left-invariance.
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The Lie bracket on Sdiff(R3) or Diff(R3) is the same as the usual Lie bracket
of vector fields.

Let u(t) := γ′(t)/γ(t) = g′◦g−1 be the intrinsic velocity vector; then this
is a divergence-free vector field, which physically represents the velocity field
in Eulerian coordinates. The extrinsic velocity vector g(t)−1u(t)g(t) = u ◦
g(t) is then the velocity field in Lagrangian coordinates; it is also divergence-
free.

If there were no constraint of incompressibility (i.e. if one were working
in Diff(R3) rather than Sdiff(R3)), then the metric is flat, and the geodesic
equation of motion is simply given by Newton’s first law

d2

dt2
g(t) = 0

or in terms of the intrinsic velocity field u,

∂tu(t) + (u · ∇)u = 0.

Once we restrict to incompressible fluids, this becomes

d2

dt2
g(t) ⊥ Tg(t) Sdiff(R3)

or, in terms of the intrinsic velocity field,

∂tu(t) + (u · ∇)u ⊥ divergence free fields

or equivalently (by Hodge theory)

∂tu(t) + (u · ∇)u = ∇p

for some p; this is precisely the Euler equations of incompressible fluids.
This equation can also be deduced from (5.30), after first calculating us-
ing (5.29) and the formula for Lie bracket of vector fields that B(X,Y ) is
the divergence-free component of X¬dY ; we omit the details, which are in
[Ar1966].

Let us now compute the extrinsic momentum P , which is conserved by
the Euler equations. Given any divergence-free vector field v (in Lagrangian
coordinates), we see from (5.34) that P is given by the formula

P (v) :=

∫
R3

u · (g∗v),

thus the form P (v) is computed by pushing v over to Eulerian coordinates
to get g∗v := (Dg ◦ g−1)(v ◦ g−1) and then taking the inner product with u.
Let us check that this is indeed conserved. Since

ut = −(u · ∇)u+∇p

and

∂t(g∗v) = −Lu(g∗v),
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where L denotes the Lie derivative along the vector field u, we see that

∂tP (v) =

∫
R3

(−(u · ∇)u+∇p) · w − u · Luw,

where w := g∗v is v in Eulerian coordinates. The ∇p term vanishes by
integration by parts, since v (and hence w) is divergence-free. The Lie
derivative is computed by the formula

Luw = (u · ∇)w − (w · ∇)u.

As u · (w · ∇)u = 1
2(w · ∇)|u|2 is a total derivative (recall here that w is

divergence-free), this term vanishes. The other two terms combine to form
a total derivative −(u · ∇)(u · w), which also vanishes, and so the claim
follows.

The external momentum is closely related to the vorticity ω := curlu.
This is because a divergence-free vector field v can (in principle, at least)
be written as the divergence v = divα of a 2-vector field α. As divergence
is diffeomorphism invariant, it commutes with pushforward:

g∗(divα) = div(g∗α)

and thus

P (divα) =

∫
R3

u · div(g∗α)

=

∫
R3

ω · g∗α

=

∫
R3

(∗ω) ∧ g∗α

where ∗ is the Hodge star. We can pull this back to Lagrangian coordinates
to obtain

P (divα) =

∫
R3

g−1
∗ (∗ω) ∧ α.

As α was an arbitrary 2-form, we thus see that the pullback g−1
∗ (∗ω) of

the Hodge star of the vorticity in Lagrangian coordinates is preserved by
the flow, or equivalently that ∗ω is transported by the velocity field u. In
the two-dimensional case, this is well known (∗ω is a scalar in this case); in
higher dimensions, this is fact is implicit in the vorticity equation

∂tωij + uk∂kωij + ωik∂kuj = 0

which can be rewritten as

∂t(∗ω) + Lu(∗ω) = 0.

In principle, the Euler-Arnold formalism allows one to write the Euler
equations for incompressible fluids into a Lax pair form. To properly carry
this out by the machinery above, though, would require calculating the
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Cartan-Killing form for the infinite-dimensional Lie group Sdiff(R3), which
looked quite tricky to me, and I was not able to complete the calculation.
However, a Lax pair formulation for this system is known [FrVi1990], and
it is likely that that formulation is essentially equivalent to the Lax pair that
one could construct from the Euler-Arnold formalism. In the simpler two-
dimensional case, it was observed in [Li2001] that the vorticity equation can
also be recast into a slightly different Lax pair form. While this formalism
does allow for some of the inverse scattering machinery to be brought to
bear on the initial value problem for the Euler equations, it does not as yet
seem that this machinery can be successfully used for the global regularity
problem.

It would, of course, also be very interesting to see what aspects of this
formalism carry over to the Navier-Stokes equation. The first naive guess
would be to add a friction term, but this seems to basically correspond to
adding a damping factor of −cu (rather than a viscosity factor of ν∆u)
to the Euler equations and ends up being rather uninteresting (it basically
slows down the time variable but otherwise does not affect the dynamics).
More generally, it would be of interest to see how the Hamiltonian formalism
can be generalised to incorporate dissipation or viscosity.

5.4.3. Notes. Thanks to Jerry Marsden for comments.
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6.1. Multiplicity of perspective

Bill Thurston’s On proof and progress in mathematics [Th1994] has many
nice observations about the nature and practice of modern mathematics.
One of them is that for any fundamental concept in mathematics, there is
usually no “best” way to define or think about that concept, but instead
there is often a family of interrelated and overlapping, but distinct, per-
spectives on that concept, each of which conveying its own useful intuition
and generalisations; often, the combination of all of these perspectives is far
greater than the sum of the parts. Thurston illustrates this with the concept
of differentiation, to which he lists seven basic perspectives and one more
advanced perspective, and hints at dozens more.

But even the most basic of mathematical concepts admit this multiplicity
of interpretation and perspective. Consider for instance the operation of
addition, that takes two numbers x and y and forms their sum x+ y. There
are many such ways to interpret this operation:

(1) (Disjoint union) x+ y is the “size”1 of the disjoint union X ] Y of
an object X of size x, and an object Y of size y.

(2) (Concatenation) x+ y is the size of the object formed by concate-
nating an object X of size x with an object Y of size y (or by
appending Y to X).

(3) (Iteration) x+ y is formed from x by incrementing it y times.

(4) (Superposition) x + y is the “strength” of the superposition of a
force (or field, intensity, etc.) of strength x with a force of strength
y.

(5) (Translation action) x+ y is the translation of x by y.

(6) (Translation representation) x + y is the amount of translation or
displacement incurred by composing a translation by x with a trans-
lation by y.

(7) (Algebraic) + is a binary operation on numbers that give it the
structure of an additive group (or monoid), with 0 being the addi-
tive identity and 1 being the generator of the natural numbers or
integers.

(8) (Logical) +, when combined with the other basic arithmetic oper-
ations, are a family of structures on numbers that obey a set of
axioms such as the Peano axioms.

(9) (Algorithmic) x + y is the output of the long addition algorithm
that takes x and y as input.

1Size is, of course, another concept with many different interpretations: cardinality, volume,
mass, length, measure, etc.
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(10) etc.

These perspectives are all closely related to each other; this is why we are
willing to give them all the common name of “addition”, and the common
symbol of +. Nevertheless there are some slight differences between each
perspective. For instance, addition of cardinals is based on the disjoint
union perspective, while addition of ordinals is based on the concatenation
perspective. This distinction is more or less invisible at the finite level,
but becomes apparent once one considers infinite cardinals or ordinals: for
instance, in cardinal arithmetic, ℵ0 = 1 + ℵ0 = ℵ0 + 1 = ℵ0 + ℵ0, whereas
in ordinal arithmetic, ω = 1 + ω < ω + 1 < ω + ω.

Transitioning from one perspective to another is often a necessary first
conceptual step when the time comes to generalise the concept. As a child,
addition of natural numbers is usually taught initially by using the disjoint
union or iteration perspective, but to generalise to addition of integers, one
must first switch to a superposition or translation perspective; similar con-
ceptual shifts are needed when one then turns to addition of rationals, real
numbers, complex numbers, residue classes, functions, matrices, elements of
abstract additive groups, nonstandard number systems, etc. Eventually, one
internalises all of the perspectives (and their inter-relationships) simultane-
ously, and then becomes comfortable with the addition concept in a very
broad set of contexts; but it can be more of a struggle to do so when one
has grasped only a subset of the possible ways of thinking about addition.

In many situations, the various perspectives of a concept are either com-
pletely equivalent to each other, or close enough to equivalent that one can
safely “abuse notation” by identifying them together. But occasionally, one
of the equivalences breaks down, and then it becomes useful to maintain a
careful distinction between two perspectives that are almost, but not quite,
compatible. Consider for instance the following ways of interpreting the
operation of exponentiation xy of two numbers x, y:

• (Combinatorial) xy is the number of ways to make y independent
choices, each of which chooses from x alternatives.

• (Set theoretic) xy is the size of the space of functions from a set Y
of size y to a set X of size x.

• (Geometric) xy is the volume (or measure) of a y-dimensional cube
(or hypercube) whose sidelength is x.

• (Iteration) xy is the operation of starting at 1 and then multiplying
by x y times.

• (Homomorphism) y → xy is the continuous homomorphism from
the domain of y (with the additive group structure) to the range
of xy (with the multiplicative structure) that maps 1 to x.
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• (Algebraic) ∧ is the operation that obeys the laws of exponentiation
in algebra.

• (Log-exponential) xy is2 exp(y log x).

• (Complex-analytic) Complex exponentiation is the analytic contin-
uation of real exponentiation.

• (Computational) xy is whatever my calculator or computer outputs
when it is asked to evaluate xy.

• etc.

Again, these interpretations are usually compatible with each other, but
there are some key exceptions. For instance, the quantity 00 would be equal
to zero using some of these interpretations, equal to one in others, and unde-
fined in yet others. The quantity 41/2 would be equal to 2 in some interpre-
tations, be undefined in others, and be equal to the multivalued expression
±2 (or to depend on a choice of branch) in yet further interpretations. And
quantities such as ii are sufficiently problematic that it is usually best to try
to avoid exponentiation of one arbitrary complex number by another arbi-
trary complex number unless one knows exactly what one is doing. In such
situations, it is best not to think about a single, one-size-fits-all notion of a
concept such as exponentiation, but instead be aware of the context one is
in (e.g. is one raising a complex number to an integer power? A positive real
to a complex power? A complex number to a fractional power? etc.) and
to know which interpretations are most natural for that context, as this will
help protect against making errors when manipulating expressions involving
exponentiation.

It is also quite instructive to build one’s own list of interpretations for
various basic concepts, analogously to those above (or in [Th1994]). Some
good examples of concepts to try this on include “multiplication”, “integra-
tion”, “function”, “measure”, “solution”, “space”, “size”, “distance”, “cur-
vature”, “number”, “convergence”, “probability” or “smoothness”. For the
concept of a “group”, see [Ta2010b, §1.14] and Section 2.3.

6.2. Memorisation vs. derivation

Mathematics is infamous for the large number of basic formulae and results
that one has to learn in the subject. But, in contrast to some other subjects
with a comparable amount of foundational material to memorise, one can
at least deduce (or at least formally derive) some of these formulae from
others, thus reducing the amount of memory needed to cover the basics.

2This raises the question of how to interpret exp and log, and again there are multiple
perspectives for each....
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Consider for instance the quotient rule

(6.1) (f/g)′ =
f ′g − fg′

g2

in differential calculus; for this formal discussion we ignore issues about lack
of differentiability or division by zero. The quotient rule can be deduced
from the simpler (and more fundamental) product rule

(fg)′ = f ′g + fg′

in a few lines. Indeed, if we set h to be the quotient of f and g,

h :=
f

g
,

then we can rewrite this division equation as a product equation,

f = gh.

Differentiating both sides using the product rule, we get

f ′ = g′h+ gh′;

solving for h’, we obtain

h′ =
f ′ − g′h

g

which upon substituting h = f/g gives the quotient rule (6.1).

The above derivation was only formally correct, but one can make it
rigorous by invoking the implicit function theorem to verify that the quotient
h is indeed continuously differentiable whenever f , g are, and when g is
bounded away from zero; we omit the details.

Now, one may argue that it would have been easier simply to memorise
the quotient rule than to memorise the derivation. But the derivation is far
more general and is ultimately of greater value when one moves on to more
advanced mathematical tasks. For instance, suppose that one reaches a point
where one has a time-dependent matrix-valued function A(t), and one wants
to compute the derivative (A(t)−1)′ of the inverse of this matrix. (Again,
we assume for now that the matrix is invertible and smoothly dependent on
time, to avoid technicalities.) If A was scalar, one could use the quotient
rule (6.1) (or the chain rule) to obtain

(6.2) (A(t)−1)′ = −A′(t)/A(t)2

but this answer is not quite correct in the matrix setting. To get the right
answer, one can use the above method of converting a division problem into
a multiplicative one. Indeed, writing B = B(t) for the inverse of A,

B = A−1,
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we convert to a multiplicative equation3

AB = I

and differentiate (using the product rule for matrices, which is identical to
its scalar counterpart, with an identical proof - another sign that the product
rule is more fundamental than the quotient rule) to obtain

A′B +AB′ = 0

(the identity matrix I of course being constant in time). Carefully solving
for B′ (keeping in mind that matrix multiplication is not commutative) we
obtain

B′ = −A−1A′B

and so on substituting B(t) = A(t)−1 we see that the correct version of (6.2)
in the matrix case is

(6.3) (A(t)−1)′ = −A(t)−1A′(t)A(t)−1.

Note that in the scalar case this collapses back to (6.2) because multiplica-
tion is now commutative; but in the non-commutative setting we need to
use (6.3) instead.

The above discussion shows that remembering the method is a more
flexible and general practice than simply memorising the result. An even
more general practice is to remember the underlying principle: expressions
involving multiplication are usually easier to manipulate than expressions in-
volving division. Yet more general still is to remember the broader strategy :
transform and simplify one’s expressions first, before performing something
complicated and delicate.

6.2.1. Reconstruction via dimensional analysis or coordinate in-
variance. If one forgot the rule for differentiating a matrix inverse, and
only vaguely remembered that the answer was something like (6.2) or (6.3),
then another way to figure out the right answer is to use a kind of “dimen-
sional analysis” (or more precisely, a coordinate-free perspective). We view
A(t) not as an n × n matrix, but instead as an invertible linear transfor-
mation from one n-dimensional vector space V to another n-dimensional
vector space W; crucially, we do not require V , W to be exactly the same
space, instead being merely isomorphic to each other. Then A′(t) is also a
transformation from V to W , whereas A(t)−1 and (A(t)−1)′ are transforma-
tions from W to V . One then sees that (6.3) is basically the only plausible
generalisation of the scalar equation (6.2) which is dimensionally consistent
or coordinate-invariant in the sense that it does not rely on any artificial

3One could also use BA = I; this will ultimately lead to the same answer.
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identification between V and W (or between V,W and Rn); for instance the
candidates

(A′(t))−1 = −A′(t)A(t)−2

or

(A′(t))−1 = −A(t)−2A′(t)

fail this test. This illustrates one of the advantages of a coordinate-independent
way of thinking; by purging coordinate-dependent concepts from one’s math-
ematical framework, one eliminates a number of incorrect formulae, some-
times to the extent that the correct formula that one wants is almost the
only4 possible choice that matches various easy special cases and passes some
obvious consistency checks.

Of course, in some cases it is more advantageous to be able to perform
calculations easily, even at the risk of introducing incorrect formulae. In such
cases, an explicit coordinate-dependent viewpoint can be useful. Ideally,
one should be able to work comfortably with or without coordinates, and
translate between the two whenever one becomes more convenient than the
other.

6.3. Coordinates

Mathematicians like to describe geometric spaces in terms of numbers. In
particular, they often describe a space X (or a portion thereof) via a coor-
dinate system C : X → Rn, which takes any point p in the space X (or a
portion thereof) and returns a set of coordinates C(p) = (x1(p), . . . , xn(p))
for that point. One can think of this coordinate system as a system of n
coordinate functions x1(), . . . , xn(), each of which maps points in space to a
single number, each of which partially describes the location of that point.

For instance, in the Cartesian coordinate system of the plane, every
point p has an x-coordinate x(p) and an y-coordinate y(p), so the coordinate
functions are x() and y(). If instead we use polar coordinates, every point p
now has a radial coordinate r(p) (the distance to the origin) and an angular
coordinate θ(p). On Earth, we have5 latitude() and longitude() as coordinate
functions (and also altitude(), if one is allowed to leave the surface of the
earth).

Units of measurement also give rise to coordinate functions. For in-
stance, consider the yard as a unit of length. It gives rise to the yard
coordinate function yards(), that takes a line segment in physical space and

4This, for instance, is how Einstein was famously led to his equations for gravitation in

general relativity.
5For the purposes of this discussion I will ignore the issue of coordinate singularities, for

instance the issue of defining the angular coordinate at the origin, or longitude at the North or
South poles.
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returns its length in yards. For instance, if L is a line segment that is 10
yards long, then yards(L) = 10.

Coordinate systems convert points in space to systems of numbers. One
can6 invert this system, and create an inverse coordinate system that con-
verts a set of numbers (x1, . . . , xn) to a point C−1(x1, . . . , xn) in space. For
instance, given a latitude between 90S and 90N, and a longitude between
180E and 180W, one can locate a point on the Earth. Given a positive real
number x, one can create a line segment that is x yards long, and so forth.

When the coordinate system (and hence, its inverse) is sufficiently linear
in nature, one can often describe an inverse coordinate system C−1 in terms
of a basis v1, . . . , vn for the space; the inverse C−1(x1, . . . , xn) of an n-tuple
of real numbers x1, . . . , xn is then formed by combining x1 copies of v1 with
x2 copies of v2, and so forth up to xn copies of vn. In equations,

C−1(x1, . . . , xn) = x1v1 + . . .+ xnvn.

This basis v1, . . . , vn are then dual to the coordinate functions x1(), . . . , xn();
indeed, the latter is often referred to as the dual basis to v1, . . . , vn.

For instance, the dual to the yards() coordinate function is the unit
yardstick; to make a line segment L that is 10 yards long (i.e. yards(L) =
10), one simply takes the unit yardstick and dilates it by a factor of 10. The
dual to the x() and y() Cartesian coordinates are the standard basis vectors
(1, 0) and (0, 1). The latitude() and longitude() functions are nonlinear, but
a dual basis can still be prescribed in terms of operations to perform, rather
than specific vectors or line segments; the dual to the latitude function is the
operation of moving one degree in the north or south direction (depending
on one’s sign conventions), and similarly the dual to the longitude function
is the operation of moving one degree in the east or west direction7.

One of the quirks of duality is that basis vectors often act in the opposite
way to the coordinate functions that they are dual to. For instance, the unit
yardstick is three times as long as the unit footstick:

1 yard = 3 feet.

But, dually, the yards() coordinate is only one-third of the feet() coor-
dinate:

6In some cases, this set of numbers needs to be within an acceptable range before one can

invert.
7But there is no “one degree north yardstick” or “one degree east basis vector”, except in

an infinitesimal sense at each location on earth. In mathematics, we can formalise these concepts
using the notion of a tangent space.
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yards(L) = feet(L)/3.

For instance, a line segment L which is 30 feet long, is only 10 yards long.
The larger the unit of length, the smaller the coordinate function becomes;
it is quite literally an inverse relationship.

Sometimes, this inverse relationship can cause confusion if the distinction
between bases and coordinate functions have not been carefully maintained.
For instance, in the Cartesian plane, the set of points (x, y) in which x = 0
is, confusingly, the y-axis, whereas the set of points where y = 0 is the x-
axis. The problem here is that when we say something like “x = 0”, we are
using the x() coordinate, but when we say something like “x-axis”, we are
thinking of an object generated by the dual basis vector (1, 0) to that x()
coordinate.

A similar question: is latitude a “north-south” concept or an “east-west”
concept? To change the latitude, one moves in a north-south direction, but
all the lines of constant latitude, such as the equator, are oriented in an
east-west direction.

There is a particularly confusing failure to distinguish between bases
and coordinate functions in the terminology of several variable calculus.
For instance, consider the partial derivative

∂f

∂x
(x, y, z)

of a three-dimensional function in the x direction. It appears that we
are somehow differentiating with respect to the x() coordinate, but this is
not correct; we are instead differentiating in the direction of the basis vector
(1, 0, 0) that is dual to that coordinate.

This may seem like a trivial semantic distinction, but it becomes im-
portant when there are multiple coordinate systems in play. Consider for
instance the study of an ideal gas G that obeys the ideal gas law

pV = nRT

linking8 the pressure p, the volume V , and the temperature T . We can
view these three quantities p(), V (), and T () as coordinate functions de-
scribing the state of the gas G. But because of the ideal gas law, we don’t
need all three of these quantities to specify the state; just two of them will
suffice. For instance, we can use pressure-volume coordinates (p(), V ()),
volume-temperature coordinates (V (), T ()), or pressure-temperature coor-
dinates (p(), T ()).

8We treat n and R as constants for this discussion.
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Now suppose we are measuring some statistic F (G) of the gas G (e.g.
its density, its colour, its entropy, etc.), and want to “differentiate F with
respect to temperature” to create a rate of change

∂F

∂T
(G).

Unfortunately, this expression is not well-defined, because it is sensitive to
exactly what coordinate system one is using. If, for instance, one is using
volume-temperature coordinates, the above partial derivative describes how
F varies with respect to temperature while holding volume fixed ; this is the
basis operation dual to temperature in the volume-temperature coordinate
system. If instead one is using pressure-temperature coordinates, the above
partial derivative describes how F varies with respect to temperature while
holding pressure fixed (i.e. allowing the gas to expand or contract as the
temperature allows, rather than being constrained to a fixed container);
this is the basis operation dual to temperature in the pressure-temperature
coordinate system. The two operations can be quite different. For instance,
the gas density has a zero derivative with respect to temperature in volume-
temperature coordinates, but a negative derivative in pressure-temperature
coordinates.

To resolve this issue, chemists often subscript the partial derivative by
the other coordinates in the system to emphasise that they are being held
fixed. For instance (

∂F

∂T

)
p

(G)

would be the rate of change with respect to temperature, holding pressure
fixed, whilst (

∂F

∂T

)
V

(G)

would be the rate of change with respect to temperature, holding volume
fixed. Mathematicians generally avoid this sort of notation, instead using
notation such as X · ∇F , DvF , or dF (X) that emphasises the role of basis
vectors (or vector fields) instead of coordinate systems.

One point that the ideal gas example illustrates is that the dual basis
vector to a coordinate function does not depend only on that coordinate
function, but also on the other coordinates in the system; the operation
“change the temperature” is not well defined9 until one specifies what other
coordinates are being held fixed.

In the one-dimensional example of the yards() coordinate and the unit
yardstick, we saw that a change of basis (e.g. changing yards to feet) affects

9The failure to realise this fact is a basic fallacy in economics known as the ceteris paribus
fallacy.
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the coordinate system in an inverse manner to the basis vectors. The same
inverse relationship continues to hold in higher dimensional coordinate sys-
tems, but is less intuitive because now one must invert matrices or linear
transformations instead of numbers in order to quantify the relationship. For
instance, to convert the basis operation “increase temperature, while keep-
ing pressure constant” into volume-temperature coordinates, one would have
to take a suitable combination of “increase temperature, while keeping vol-
ume constant” and “increase volume, while keeping temperature constant”;
on the other hand, the other basis operation of pressure-temperature co-
ordinates, namely “increase pressure, while keeping temperature constant”
becomes simply “decrease volume, while keeping temperature constant” in
volume-temperature coordinates.

The eccentricities of matrix multiplication and matrix inversion can lead
to some unintuitive consequences in higher dimensions. For instance, in spe-
cial relativity, one has the phenomenon of length contraction: if one observer
A is travelling at a constant velocity with respect to another observer B, and
A is carrying a rod of length L at rest in A’s frame of reference, then that
rod will be contracted to be less than L in B’s frame. So it would appear
that B’s unit yardstick is longer than A’s unit yardstick. But by symmetry,
a rod of length L at rest in B’s frame will appear to be shorter than L in
A’s frame, so that A’s unit yardstick appears to be longer than B’s unit
yardstick. These two facts would contradict each other in a one-dimensional
setting, but are compatible with each other in higher dimensions. The rea-
son is due to the difference in the time coordinate functions of A and B.
The more correct description is that B’s unit yardstick is a lengthening of
A’s unit yardstick combined with a time displacement in A’s frame of ref-
erence; meanwhile, A’s unit yardstick is a lengthening of B’s unit yardstick
combined with a time displacement in B’s frame of reference. The entan-
gling of time and space given by special relativity ends up causing these two
lengthening effects (or contraction effects, when viewed from the opposite
perspective) to cancel each other out.

6.4. Spatial scales

As a crude heuristic, one can describe the complexity of any given spatial
domain X by three parameters10:

• The largest (or coarsest) scale R that appears in the domain (this
is usually comparable to the diameter of X, and is infinite if X is
unbounded);

10If the space X is not isotropic, then the situation is more complicated; for instance, if X is

an eccentric rectangle X = [−A,A]x[−B,B], then there are two largest scales A, B rather than
one. But for this heuristic discussion we shall restrict attention to isotropic settings.
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• The smallest (or finest) scale r that appears in the domain (this is
only non-zero for discrete (or discretised) spaces X); and

• The dimension d of the domain (e.g. Hausdorff or Minkowski di-
mension).

Thus, for instance, if X is the unit cube [0, 1]3 or the 3-torus (R/Z)3,
then R ∼ 1, r = 0, and d = 3. Or if X is the lattice Z2, then R =∞, r ∼ 1,
and d = 2. For a cyclic group Z/NZ, one can either adopt a “discrete”
perspective and take R ∼ N , r ∼ 1, d = 1, or else one can take a “compact”
perspective (identifying Z/NZ with the N th roots of unity in R/Z) and take
R ∼ 1, r ∼ 1/N , d = 1.

As a rule of thumb, a set X is bounded if R is bounded; it is discrete if
r is bounded away from zero; and it is (pre-)compact (in a strong topology)
if R is bounded and d is bounded. (In the weak topology, the hypothesis
that d is bounded is not needed.)

The cardinality of X is roughly (R/r)d. Thus, for instance, we have
a heuristic explanation as to why spaces which are simultaneously discrete
and compact are finite.

If X is a finite abelian group, then the Pontryagin dual of X has the
same dimension d, but has inverted scales; thus the coarsest scale is now 1/r
and the finest scale is 1/R. Thus we see a heuristic explanation as to why
discrete groups have compact duals and vice versa (note that the Pontryagin
topology is the weak topology in infinite-dimensional settings), and also why
the Pontryagin dual has the same cardinality as the original group. We also
see an explanation of why the Pontryagin dual of Z/NZ with the discrete
Haar measure (counting measure) is Z/NZ with the compact Haar measure
(normalised counting measure), and vice versa.

We thus see that there are three basic ways a space can fail to be finite; by
having arbitrarily large scales, arbitrarily small scales, or arbitrarily many
dimensions. To approximate an infinite space by a finite one, one has to
finitise all three aspects, by some combination of truncation (to finitise the
largest scale), discretisation (to finitise the smallest scale), or dimension
reduction.

The above heuristic can also be used to classify the different ways in
which sequential compactness can fail in a function space in the strong
topology (i.e. a sequence fn of functions fails to have any convergent subse-
quence):

(1) Escape to norm infinity. The norm of elements of the sequence
is unbounded.

(2) Escape to spatial infinity. The location of elements of the se-
quence is unbounded.
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(3) Escape to frequency infinity. The frequency of elements of the
sequence is unbounded (or equivalently, the physical scale is not
bounded from below).

(4) Escape to dimensional infinity. The location of elements in
the sequence cannot be captured inside a finite-dimensional space.
(This last escape is only relevant for function spaces on infinite-
dimensional domains.)

On the other hand, once one closes off all four avenues of escape to infin-
ity, one usually recovers compactness (when the domain is locally compact).
Several results and principles in analysis make this more precise: Arzela-
Ascoli theorem, Rellich compactness theorem, dominated convergence the-
orem, concentration compactness, uncertainty principle, etc.

6.5. Averaging

Given n quantities a1, . . . , an, how does one define the average value of these
quantities? There are, unfortunately, multiple answers to this question. One
can take a simple unweighted average

a1 + . . .+ an
n

.

Or, one could assign each quantity ai a different weight wi, and end up
with a weighted average

a1w1 + . . .+ anwn
w1 + . . .+ wn

.

And then there are any number of other useful averages (e.g. the median, the
mode, the root mean square, the geometric mean, etc.) which are slightly
different from the simple or weighted averages, and can be more relevant in
some cases.

Many “paradoxes” in statistics, as well as many discrepancies between
official statistics and subjective experience, arise because of the distinction
between these various averages. For instance, consider the question of what
the population density of the United States is. If one does a simple average,
dividing the population of the US by the area of the US, one gets a density
of about 300 people per square mile, which if the population was spread uni-
formly, would suggest that each person is about 100 yards from the nearest
neighbour.

Of course, this does not conform to actual experience. It is true that if
one selects a random square mile patch of land from the US at random, it
will contain about 300 people in it on the average. However, not all such
patches are equally inhabited by humans. If one wants to know what what
density the average human in the US sees, rather than the average square
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mile patch of land, one has to weight each square mile by its population
before taking an average. If one does so, the human-weighted population
density now increases to about 1400 people per square mile - a significantly
different statistic.

Similarly, the average (unweighted) traffic density on a freeway tends to
be much smaller than the density that one personally experiences on that
freeway, not because the statistics are fudged or that one is unlucky, but
because one is much more likely to be on the freeway during high-traffic
times than during low-traffic times, by definition. The more accurate way
to model the subjective impression of traffic density is to weight each unit
of time by the traffic flow before taking an average.

Another example: the average family size in the US is about 3.1, but
the family that you are currently in is likely to be larger than this, since
a large family is more likely to contain you than a small family. Again, to
reflect subjective experience, one should weight each family by its size before
averaging.

Yet another example of how weights distort averages is the friendship
paradox . This paradox asserts (somewhat depressingly) that your friends
are usually likely to be more popular than you are, where “more popular” is
defined as “having more friends”. The reason for this is that more popular
people are, by definition, more likely to show up in your circle of friends
than the average person, and so drag up the average. One can see this phe-
nomenon empirically in modern social networks - visit the pages of some of
your friends at random, and count their number of friends against yours. An
extreme instance of this phenomenon occurs when one considers celebrities
on social networks that have enormous numbers of followers; by definition,
a large number of people on these networks will be following at least one
celebrity, but very few of them will be celebrities themselves.

When combining averages of small sub-populations together to form an
average of the combined population, one needs to weight each sub-average
by the sub-population size in order to not distort the final average. If the
sub-populations being averaged over vary, this can then lead to Simpson’s
paradox : when averaging two quantities X and Y , it is possible for the
average value of X to exceed that of Y on each sub-population, while being
less than that of Y for the whole population, if the size of the sub-populations
that X is averaging over is different from those that Y is averaging over. A
textbook example of this occured with graduate student application success
rates of men and women to UC Berkeley in the 1970s: it turns out that
in most departments, women had a slightly higher success rate in their
applications than men, but in the university as a whole, women had a lower
success rate. The ultimate reason for this was that women tended to apply to
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more competitive departments, which lowered their overall average success
rate.

In pure mathematics, one can sometimes exploit the difference between
unweighted and weighted averages to one’s advantage. One example of this is
the Balog-Szemerédi-Gowers lemma in graph theory (see e.g. [TaVu2006]),
which has a number of very useful applications to additive combinatorics (it
plays a role, for instance, in recent work on expanders, on Szemerédi’s the-
orem, and on the inverse conjecture for the Gowers norm). One can state
it informally in terms of friendship graphs, as with the friendship paradox.
Consider a population of people, many of whom are friends with each other
(mathematically, this is a dense graph). Even if there are lots of friends in
this population, it is still possible that the graph is not highly connected;
the population may be segregated into cliques or other subdivisions, with
few connections between these subgroups. However, (one formulation of)
the Balog-Szemeredi-Gowers lemma asserts that one can always find a fairly
large subgroup in which almost everybody in that subgroup either knows
each other, or at least have many friends in common (i.e. are highly con-
nected with one degree of separation).

The idea of the proof is actually very simple: what one does is one picks
a popular person at random, and looks at that person’s circle of friends.
Every pair of people in that circle is already guaranteed to have at least one
common friend, namely the original person; but they are now very likely to
have a lot of other common friends as well. The reason is that a pair of
people who have very few friends in common would have been quite unlikely
to have arisen in the circle of friends of the randomly selected popular person
in the first case.

6.6. What colour is the sun?

Sometimes, children ask good questions that adults would overlook as being
too “obvious”, without further analysis. Today, my seven-year old son was
arguing with a friend over the colour of the sun. The friend took the position
that the sun was yellow, whereas my son said it was white, based on direct
observation (not a terribly good idea in this case, but never mind that). To
my own surprise, I was not able to immediately adjudicate the issue, but
had to go do a bit of research first.

To answer the question properly, one has to distinguish between two
notions of colour: physical colour, which is the power intensity function that
describes the intensity of each wavelength of light (or spectral colour) in
the visible spectrum, and the perceived colour, which is the colour that one
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actually sees, based on the three11 different color receptors (the red, green,
and blue cones) in the retina. The physical notion of colour is essentially
an infinite-dimensional one, with each colour of the visible spectrum being
capable of occurring at an independent intensity. But perceived colour is
essentially a three-dimensional (RGB) concept, which arises from projecting
the physical power intensity function against the absorption spectra of the
three types of cones in the retina.

Sunlight has a physical power intensity function that has a peak at the
yellow spectral colour but is also large at other spectral colours, most notably
at green (which is part of the reason, incidentally, for the rare phenomenon
of green flashes at sunsets). So in this sense, at least, the sun is yellow12

(and astronomers indeed classify the sun as a yellow star).

On the other hand, sunlight contains significant intensity at all other
colours of the visible spectrum (which is why the rainbows, which are ul-
timately powered by sunlight, contain all of these colours), leading to all
three cones of the retina being saturated and leaving a white colour (though
if the light was dimmed enough to avoid saturation, the colour would in fact
be slightly pink (!), though this depends to some extent on one’s choices of
normalisations, which includes a choice of gamma correction and choice of
white point).

When the sun is setting, there is more atmospheric scattering due to the
low angle of the sunlight. The atmosphere tends to scatter away the blue
wavelengths (this is why the sky is blue in the presence of sunlight) and
this gives the sun a more yellow or orange colour at sunset. At sunset, the
sunlight makes all other objects appear yellowish or orangeish too; whereas
at full daylight, there is little colour distortion caused by the sun, which is
another indication of its whiteness13.

Indeed, it seems that one’s impression of the colour of the sun is driven
more by cultural considerations than by direct observation. In eastern coun-
tries, and most notably in Japan, the sun is usually portrayed as being red
(most prominently in the Japanese flag), whereas in the West it is usually
portrayed as yellow or orange. To further confuse the issue, most astronom-
ical images of the Sun are depicted in false colour (as they usually focus
on frequencies other than those favoured by human retinal cones), and the

11Partial or complete colour-blindness may occur when one or more of the receptors is not

working normally.
12Though, just to make things more confusing, if one views the sun from space, without the

filtering effect of the atmosphere, the peak intensity is actually at blue-green wavelengths rather
than at yellow.

13The whiteness of a full moon at night is yet another piece of evidence in this direction,
given that the light of a full moon is ultimately coming from reflected sunlight.
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images that match one’s cultural perception of the Sun tend to be the ones
that are retained in popular consciousness.

So the answer to the innocuous question “what colour is the sun?” is in
fact remarkably complicated: white, yellow, green, blue, orange, pink, and
red are all defensible answers from one viewpoint or another.

6.7. Zeno’s paradoxes and induction

Zeno of Elea (490BCE?-430BCE?) was arguably the first person to make
non-trivial contributions to the field of mathematics now known as real anal-
ysis, through his famous paradoxes. His first two paradoxes - the paradox
of Achilles and the Tortoise, and the dichotomy paradox - can be viewed as
the first rigorous demonstration that the discrete notion of infinity (which
we would nowadays call infinite cardinality) is distinct from the continuous
notion of infinity (which we would nowadays call unboundedness), in that a
set can have the former property without the latter.

One can contrast the discrete and continuous notions of infinity by com-
paring discrete and continuous induction methods with each other. Observe
that if a set of times T is non-empty, and has the property that given every
time t in T , there exists another t′ in T that is larger than t, then T is neces-
sarily infinite in the discrete sense (i.e. it has infinite cardinality). However,
as the Achilles and the Tortoise paradox demonstrates, T does not need
to be infinite in the continuous sense (i.e. it can be bounded). However,
suppose we add an additional property to T , namely that the limit of any
convergent sequence of times in T also lies in T (or equivalently, that T is
closed). Then it is not hard to show that T is now infinite in the continuous
sense as well (i.e. it is unbounded); this observation forms the basis of the
continuity method in partial differential equations, which is a continuous
analogue of the discrete principle of mathematical induction. So to deal
with continuous infinities, one needs the ability to jump to the limit14.

In this viewpoint, the first two of Zeno’s paradoxes make the important
point that real analysis cannot be reduced to a branch of discrete mathe-
matics, but requires additional tools in order to deal with the continuum.

The third of Zeno’s famous three paradoxes, the paradox of the arrow,
also has a very nice interpretation from the perspective of modern analysis.
This paradox demonstrates that the future state of a system (in this case,
an arrow), cannot be determined solely from its initial position; the initial
velocity must also be specified. Viewed from the perspective of the modern
theory of differential equations, this observation tells us that the equations
of motion must be at least second-order in time, rather than first-order.

14Transfinite induction operates in a very similar fashion.
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As such, one can view Zeno’s arrow paradox as a very early precursor of
Newton’s famous law F = ma.

6.8. Jevons’ paradox

Jevons’ paradox is the counterintuitive phenomenon that an increase in ef-
ficiency when using a resource may in fact lead to increased consumption of
that resource. For instance the introduction of energy-efficient lighting may
increase the net energy cost of lighting, because it increases the incentive to
use more lights.

A simple numerical example can illustrate this principle. Suppose one
has to decide whether to use one light bulb or two light bulbs to light a
room. Ignoring energy costs (and the initial cost of purchasing the bulbs),
let’s say that lighting a room with one light bulb will provide $10/month of
utility to the room owner, whereas lighting with two light bulbs will provide
$15/month of utility. (Like most goods, the utility from lighting tends to
obey a law of diminishing returns.)

Let us first suppose that the energy cost of a light bulb is $6/month.
Then the net utility per month becomes $4 for one light bulb and $3 for two
light bulbs, so the rational choice would be to use one light bulb, for a net
energy cost of $6/month.

Now suppose that, thanks to advances in energy efficiency, the energy
cost of a light bulb drops to $4/month. Then the net utility becomes
$6/month for one light bulb and $7/month for two light bulbs; so it is
now rational to switch to two light bulbs. But by doing so, the net energy
cost jumps up to $8/month.

So is a gain in energy efficiency good for the environment in this case?
It depends on how one measures it. In the first scenario, there was less
energy used (the equivalent of $6/month), but also there was less net utility
obtained ($4/month in this case). In the second scenario, more energy
was used ($8/month). but more net utility was obtained as a consequence
($7/month). As a consequence of energy efficiency gains, the energy cost
per capita increased (from $6/month to $8/month); but the energy cost per
unit of utility decreased (from 6/4 = 1.5 to 8/7 ≈ 1.14).

By use of government policies, such as taxation, one can lessen the en-
vironmental impact, but at the cost of total utility. For instance, suppose
we are in the energy efficient scenario ($4/month per light bulb), but to en-
courage conservation, the government imposes an additional $2/month tax
for each light bulb use, thus raising the effective energy price back up to
$6/month. (Such taxes are known as Pigovian taxes.) As a consequence, it
becomes rational for the room owner to just use one light bulb again. In
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this scenario, the energy cost15 is now down to $4/month, but the utility
to the room owner has dropped to $4/month (and the utility to the gov-
ernment is $2/month, for a net utility of $6/month to the community as
a whole). This “taxed energy-efficient” scenario is better than the “free-
market energy-efficient” scenario in some metrics (energy costs are lower,
both per capita and per unit of private utility, or of community utility)
but not in others (the absolute utility to the private citizen, and to the
community as a whole, is lower). Note though that this scenario is uncon-
ditionally better than the “free market energy-inefficient” scenario (which
has effectively the same outcome, but without the $2/month utility to the
government, and with reduced impact on the environment).

Similar (though not quite identical) tradeoffs occur for other government
policies, such as quotas or subsidies. So there is no unequivocal answer to
the question of whether a government policy is beneficial or not; it depends
on what exactly one wishes to optimise.

The free-market energy-efficient scenario maximises private and com-
munal short-term utility, but the taxed energy-efficient scenario maximises
private and communal long-term utility due to the higher energy efficiency.
To illustrate this, let us now also assume that energy resources are finite.
For sake of making the numbers nice and round, let us assume that there
are only $1200 units of energy resources per capita available for lighting;
after this resource is depleted, there is no further energy available16.

In the “free-market energy-inefficient” scenario, each citizen would ob-
tain a utility of $4/month for a period of $1200/$6 = 200 months = 16.67
years, for a total long-term utility of $800.

In the “free-market energy-efficient” scenario, each citizen would obtain
a utility of $7/month for a period of $1200/$8 = 150 months = 12.5 years,
for a total long-term utility of $1050.

In the “taxed energy-efficient” scenario, each citizen obtains a utility of
$4/month and the government obtains a utility of $2/month for a period of
$1200/$4 = 300 months = 25 years, for a total long-term utility of $1200
for the private citizen and an additional $600 for the government.

15Actually, this is not quite the full story, because some portion of the $2/month of taxation

income will ultimately be spent on energy expenditures again, but this is a secondary effect which

we will ignore here.
16To oversimplify, we assume that energy prices remain constant throughout this process; in

practice, energy costs would rise as the pool of available resources shrinks, but this would lead to
a much more complicated analysis, so we omit this important aspect of energy prices here.
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Thus we see17 that without taxation, increases in energy efficiency in-
crease utility markedly in both the short term and long term, but signifi-
cantly reduces the time for which the energy resources last. However, with
taxation, increases in energy efficiency significantly increases both long-term
utility (both for the private citizens, and for the community) and the time
for which the resources last, but at the cost of short-term utility.

The above analysis has implicitly assumed short-term rationality : each
citizen acts to maximise his or her short-term (month-to-month) utility.
Let us now return to the free-market energy-efficient scenario, in which we
assume that the citizens, being environmentally conscious, are long-term
rationalists rather than short-term rationalists; they seek to optimise their
cumulative utility over time18, rather than their short-term monthly utility.
If there was only one citizen accessing the energy resource, then the rational
strategy would now be to conserve (i.e. to use one light bulb), as this yields
$6/month utility over 300 months for a net long-term utility of $1800, rather
than $7/month over 150 months for a net long-term utility of $1050. This
outcome is similar to the taxed energy-efficient scenario, except that all of
the utility gained accrues to the private citizen, rather than being partially
absorbed by the government.

However, if there are enough private citizens sharing the same resource,
then the “tragedy of the commons” effect kicks in. Suppose for instance
that there are 100 citizens sharing the same energy resource, which is worth
$1200×100 = $120, 000 units of energy. If all the citizens conserve, then the
resource lasts for $120, 000/$400 = 300 months and everyone obtains $1800
long-term utility. But then if one of the citizens “defects” by using two
light bulbs, driving up the net monthly energy cost from $400 to $404, then
the resource now only lasts for $120, 000/$404 ∼ 297 months; the defecting
citizen now gains approximately $7×297 = $2079 utility, while the remaining
conserving citizens’ utility drops from $1800 to $6× 297 = $1782. Thus we
see that it is in each citizen’s long-term interest (and not merely short-term
interest) to defect; and indeed if one continues this process one can see that
one ends up in the situation in which all citizens defect. Thus we see that
the tragedy of the commons effectively replaces long-term incentives with
short-term ones, and the effects of voluntary conservation are not equivalent
to the compulsory effects caused by government policy.

17Of course, these effects are dependent to some extent on the choice of numbers selected for

this toy model; but the outcomes are fairly typical, as can be seen by experimenting with other
numbers or other models.

18For simplicity we ignore any discounting due to inflation or the time value of money in this
analysis.
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6.9. Bayesian probability

In classical logic, one can represent one’s information about a system as a set
of possible states that the system could be in, based on the information at
hand. With each new measurement of the system, some possibilities could
be eliminated, leading to an updated posterior set of information that is an
improvement over the prior set of information. A good example of this type
of updating occurs when solving a Sudoku puzzle; each new cell value that
one learns about constrains the possible values of the remaining cells. Other
examples can be found in the classic detective stories of Arthur Conan Doyle
featuring Sherlock Holmes. Proof by contradiction can also be viewed as an
instance of this type of deduction.

A modern refinement of classical deduction is that of Bayesian proba-
bility . Here, one’s information about a system is not merely represented as
a set of possible states, but by a probability distribution on the space of all
states, indicating one’s current beliefs on the likelihood of each particular
state actually being the true state. Each new measurement of the system
then updates a prior probability distribution to a posterior probability dis-
tribution, using Bayes’ formula

(6.4) P(A|B) =
P(B|A)P(A)

P(B)
.

Bayesian probability is widely used in statistics, in machine learning, and in
the sciences.

To relate Bayesian probability to classical deduction, recall that every
probability distribution has a support, which (in the case when the space of
states is discrete) is the set of all states that occur with non-zero probability.
When performing a Bayesian update on a discrete space, any state which
is inconsistent with the new piece of information will have its posterior
probability set to zero, and thus be removed from the support. Thus we
see that whilst the probability distribution evolves by Bayesian updating,
the support evolves by classical deductive logic. Thus one can view classical
logic as the qualitative projection of Bayesian probability, or equivalently,
one can view Bayesian probability as a quantitative refinement of classical
logic.

Alternatively, one can view Bayesian probability as a special case of clas-
sical logic by taking a frequentist interpretation. In this interpretation, one
views the actual universe (or at least the actual system) as just one of a
large number of possible universes (or systems). In each of these universes,
the system is in one of the possible states; the probability assigned to each
state is then the proportion of the possible universes in which that state is
attained. Each new measurement eliminates some fraction of the universes
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in a given state, depending on how likely or unlikely that state was to ac-
tually produce that measurement; the surviving universes then have a new
posterior probability distribution, which is related to the prior distribution
by Bayes’ formula.

It is instructive to interpret Sherlock Holmes’ famous quote, “When you
have eliminated all which is impossible, then whatever remains, however
improbable, must be the truth,” from a Bayesian viewpoint. The statement
is technically correct; however, when performing this type of elimination to
an (a priori) improbable conclusion, the denominator in Bayes’ formula is
extremely small, and so the deduction is unstable if it later turns out that
some of the possibilities thought to have been completely eliminated, were
in fact only incompletely eliminated19

6.9.1. Implication. We now compare classical and Bayesian logic with
regard to the concept of implication.

In classical logic, we have the notion of material implication: given two
statements A and B, one can form the statement “A implies B”, which is
the assertion that B is true whenever A is true.

In Bayesian probability, the analogous notion is that of conditional prob-
ability : given two events A and B, one can form the conditional probability
P(B|A), which measures the likelihood that B is true given that A is true.

If P(B|A) = 1, then this is essentially equivalent (outside of an event of
probability zero) to the assertion that A implies B. At the other extreme,
if P(B|A) = 0, this is essentially equivalent to the assertion that A implies
not-B. If P(B|A) is instead strictly between 0 and 1, then A implies B some
of the time, and not-B at other times.

In classical logic, if one knows that A implies B, one cannot then deduce
that B implies A. However, in Bayesian probability, if one knows that the
presence of A elevates the likelihood that B is true, then an observation of B
will conversely elevate the prior probability that A is true, thanks to Bayes’
formula (6.4):

(P(B|A) > P(B)) =⇒ (P(A|B) > P(A)).

On the other hand, P(B|A) = 1 does not imply P(A|B) = 1, which corre-
sponds to the inability to take converses in classical logic.

This may help explain why taking converses is an intuitive operation
to those who have not yet been thoroughly exposed to classical logic. It is
also instructive to understand why this disparity between the two types of
deduction is not in conflict with the previously mentioned links between the

19Compare with the mantra “extraordinary claims require extraordinary evidence”, which
can be viewed as the Bayesian counterpoint to Holmes’ classical remark.
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two. This disparity is roughly analogous to the disparity between worst-case
analysis and average-case analysis; see Section 6.10.

A similar disparity occurs with taking contrapositives. In classical logic,
“A implies B” is completely equivalent to “not-B implies not-A”. However,
in Bayesian probability, the conditional probabilities P(A|B) and P(¬B|¬A)
can be completely different. A classic example is that of the two statements
“All swans are white”, and “All non-white things are non-swans”. Classi-
cally, these two statements are logically equivalent: one is true if and only
if the other is true. However, from a probabilistic viewpoint, the two state-
ments are very different. For instance, it is easy to conceive of a situation
in which half (say) of all swans are black, whereas the overwhelming ma-
jority of non-white things are not swans. Thus, if x is a randomly selected
object20, the probabilities

P(x is white|x is a swan)

and
P(x is a non-swan|x is not white)

can be completely different.

This can shed light on the problem of induction in the philosophy of
science. Intuitively, if one wished to test the hypothesis “all swans are
white”, then every observation of a white swan should help confirm this
hypothesis. However, the hypothesis is logically equivalent to “all non-white
things are non-swans”, and it is intuitively clear that an observation of a
non-white non-swan does very little to confirm the hypothesis.

This distinction can be clarified by comparing the hypothesis

H = “all swans are white”

with a null hypothesis, such as

H0 = “Half of all swans are white, and the other half black”.

If A is the event that a randomly selected swan is white, then P (A|H) = 1
and P (A|H0) = 1/2, so by Bayes’ formula, an observation of A doubles21

the probability of H occurring relative to H0:

P(H|A)

P(H0|A)
=

P(A|H)

P(A|H0)

P(H)

P(H0)
= 2

P(H)

P(H0)
.

On the other hand, if B is the event that a randomly selected non-
white object is not a swan, then P(B|H) = 1 and P(B|H0) is extremely
close to 1 (since the number of non-white non-swans massively outnumber

20Let us ignore for now the important issue of how to define “randomly selected object”.
21Note that this is only under the assumption that the swan really was chosen uniformly at

random. If there are biases in the selection procedure, e.g. if the swans were only selected from

Europe rather than from both Europe and Australia, then the above analysis is inaccurate.
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the number of swans, regardless of how many swans are non-white). So the
relative likelihood of H compared with the null hypothesis H0 barely budges
with an observation of B. (Similarly with just about any other choice of null
hypothesis.)

This illustrates a more general point: in order to properly determine
whether a piece of evidence A truly supports a given hypothesis H, it is not
enough to determine how likely A would have occurred under that hypothesis
(i.e. to compute P(A|H)), but one also has to determine how likely A would
have occurred under rival hypotheses (i.e. to compute P(A|H0) for various
competing hypothesesH0). It is the ratio P(A|H)/P(A|H0) between the two
that determines the strength of the evidence: a strong piece of evidence needs
to be plausible under hypothesis H, while simultaneously being implausible
under rival hypotheses.

6.9.2. Deduction and confirmation. The most basic deduction in clas-
sical reasoning is that of modus ponens: if one knows A, and one knows that
A implies B, then one can deduce B. The Bayesian analogue of this is the
inequality

P(B) ≥ P(B ∧A) = P(B|A)P(A).

In particular, if P(A) = 1, and P(B|A) = 1, then P(B) = 1.

More generally, one has the inequality

P(C|A) >= P(C|B)P(B|A),

which generalises the classical fact that given “A implies B” and “B implies
C”, one can deduce “A implies C”.

In classical logic, one has the principle of mathematical induction, which
asserts that if A1 is true, and if An implies An+1 for all n = 1, 2, . . ., then
An is true for all n. The Bayesian analogue of this is the inequality

P(An) ≥ P(An|An−1)P(An−1|An−2) . . .P(A2|A1)P(A1).

In particular, if all the probability factors on the right-hand side are equal
to 1, then the left-hand side is equal to 1 also. But observe that if the
probability factors on the right-hand side are strictly less than 1, then this
inequality becomes increasingly weak as n goes to infinity. For instance, if
we only know that P(Ai+1|Ai) ≥ 0.99 for all i (informally, we are only “99%
confident” in each inductive step), then even if we have complete confidence
in the base case A1 (i.e. P (A1) = 1), we can only obtain the bound

P (An) ≥ (0.99)n,

which is a bound that converges exponentially to zero as n → infinity.
Thus we see that induction can only be safely applied if one is working in
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a “mathematical” mode of thinking (see Section 6.10), in which all implica-
tions are known to be true22 with 100% confidence rather than merely 99%
confidence.

We thus see that a chain of inductive reasoning can become increasingly
shaky in the Bayesian world. However, one can buttress such a chain by
using independent confirmations. Suppose for instance one wants to compute
some physical quantityX. We can take a measurementX1 ofX, but suppose
that this measurement is only 90% reliable, in the sense that P(X1 = a|X =
a) ≥ 0.9 for any value a of the actual quantity X. Then we only have a 90%
confidence that X will equal X1: P (X = X1) ≥ 0.9.

But suppose we take two independent measurements X1, X2 of the same
measurement X; thus, if X = a, then the events X1 = a and X2 = a
each occur with an independent probability of at least 0.9. Then we see
that for any fixed value a of X, the probability that X1 = X2 = X is at
least 0.9 × 0.9 = 0.81, while the probability that X1 = X2 6= X is at most
0.1× 0.1 = 0.01. Computing the conditional probabilities, we see that if X1

and X2 agree, then the confidence that this value is equal to X now increases
to 0.81

0.82 ≈ 99%:

P(X = X1 = X2|X1 = X2) ≥ 81

82
.

Thus we see that one can use repeated independent trials to boost an un-
reliable measurement into an increasingly reliable measurement. This basic
idea is developed much further in the theory of confidence intervals in sta-
tistics. Note however that it is crucial that the different trials really are
independent; if there is a systematic error that affects all the trials in the
same way, then one may not get nearly as much of a boost in reliability from
increasing the number of trials23.

Nevertheless, having many independent confirmations of a deductive
chain of reasoning

A1 =⇒ A2 =⇒ . . . =⇒ An

can greatly increase the confidence24 that the final conclusion An is indeed
correct. For instance, if one wants to be convinced of the validity of a lengthy

22Actually, one can allow a small amount of error in each implication of an induction, provided
that one constrains the length of the induction to be much less than the reciprocal of that error.

23A further caveat: the confidence expressed by these calculations is only valid before one

actually takes the measurements X1, X2. Once one knows the values of these measurements, the
posterior probability distribution of X changes as per Bayes’ formula, in a manner that depends
on one’s prior distribution on X. In particular, if X1 and X2 both equal a for some value of

a which one believes is very unlikely that X should equal, then one’s posterior probability that

X = a will be larger than one’s prior probability, but would still be small.
24The fact that chains of reasoning can degrade the final confidence in the conclusion, whilst

independent confirmations can buttress such confidence, is somewhat analogous to the fact that
resistances add together when placed in series, but decrease when placed in parallel.
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mathematical proof, the existence of independent proofs of key steps of the
argument will help build confidence. Even heuristic proofs of such steps,
while insufficient to be truly convincing in and of themselves, can be very
valuable in confirming a more rigorous proof in the event that one of the
steps in that latter proof turns out to contain some minor flaws or gaps.

Interestingly, the method of proof by contradiction, which seems so sim-
ilar to that of taking contrapositives, is much more stable in the Bayesian
sense. Classically, this method starts with the hypotheses “A implies B”
and “not B”, and deduces “not A”. The Bayesian analogue of this is the
inequality

P(¬A) ≥ 1− 1−P(¬B)

P(B|A)

which is easily verified; in particular, if P(¬B) and P(B|A) are both equal to
1, then P(¬A) is also equal to 1. Furthermore, if P(¬B) and bfP (B|A) are
close to 1, then P(¬A) is close to 1. For instance, if the former probabilities
are at least 90%, then the latter probability is at least 88%.

Thus we see that different rules of reasoning in classical logic have quite
different stability properties once one introduces some Bayesian uncertainty:
contrapositives are unstable, proofs by contradiction are stable, and induc-
tions are only stable if the length of the induction is short, or if one buttresses
the chain of inductions by independent confirmations. On the other hand,
we also saw that taking converses, while illegal in classical logic, has some
partial justification in Bayesian probability. So the relationship between
classical reasoning and Bayesian reasoning is in fact rather subtle.

Remark 6.9.1. Bayesian probability can be generalised further; for in-
stance, quantum mechanics (with the Copenhagen interpretation) can be
viewed as a noncommutative generalisation of Bayesian probability, though
the connection to classical logic is then lost when one is dealing with ob-
servables that do not commute. But this is another story...

6.10. Best, worst, and average-case analysis

One can broadly divide the outcomes of any given action into three25 cate-
gories: the worst-case scenario, the average-case scenario, and the best-case
scenario. When trying to decide on what action to take, one has to set up-
per bounds and lower bounds for what scenarios are reasonable to consider.
One can roughly categorise different modes of thinking by the upper bounds
and lower bounds one chooses to set:

25In principle, there should in fact be a spectrum of intermediate scenarios between these

three, but thanks to the phenomenon of concentration of measure, these three scenarios tend to
dominate in any given analysis.
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• Mathematical and pedantic thinkers tend to set the best-case
scenario as the upper bound and the worst-case scenario as the
lower bound. (This is the basis for various standard jokes involving
stereotypical mathematicians.)

• Practical and scientific thinkers tend to set the average-case
scenario as both the upper bound and the lower bound. (This helps
explain why arguments that are convincing to a physicist might not
be as convincing to a mathematician, and vice versa.)

• Conservative and pessimistic thinkers tend to set the average-
case scenario as the upper bound, and the worst-case scenario as
the lower bound. (Here, “conservative” is with respect to risk tol-
erance, not political orientation, although there is arguably some
correlation between the two uses of the term.)

• Risk-taking and optimistic thinkers tend to set the average-
case scenario as the lower bound, and the best-case scenario as the
upper bound.

• Wishful and idealistic thinkers tend to set the best-case sce-
nario as both the lower bound and the upper bound.

• Paranoid and cynical thinkers tend to set the worst-case sce-
nario as both the lower bound and the upper bound.

• Absolutist and ideological thinkers tend to consider only the
worst-case and best-case scenarios, and ignore the average-case sce-
nario. (As such, this mode of thinking is vulnerable to false di-
chotomies and slippery slope arguments.)

• Reckless and impulsive thinkers tend consider none26 of the
scenarios when making a decision.

Each of these modes of thinking can lead to different decisions from
the same set of data. Whether one of these modes is more “correct” than
another is however a complicated question; the answer depends to a large
extent to one’s tolerance for downside risk and one’s desire for upside risk.
This in turn can depend heavily on the context; for instance, a 10% failure
rate might be completely acceptable for, say, cooking a meal, but not for
flying a plane. A proper approach to risk management is not locked into any
one of the above modes of thinking, but instead evaluates all three scenarios
and balances them against one’s appetite for downside and upside risk for
the situation at hand.

It is also worth noting that the best-case and worst-case scenarios can be
very sensitive to one’s prior assumptions or models, whilst the average-case

26In particular, “reckless” is quite distinct from (calculated) “risk-taking”; cf. Han Solo’s
quote “Never tell me the odds!”.
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scenario tends to be much more robust in this regard. This is of particular
concern for aggressive risk-management strategies which are very sensitive
to the precise likelihood of these extreme scenarios.

These modes of thinking often come up at different stages of solving
a mathematical problem. For instance, at the very initial stages of trying
to solve a mathematical problem, in which one is brainstorming (either by
oneself, or with collaborators) to find a halfway plausible strategy to attack
the problem, one often works in a wishful or “best-case scenario” mode
of thinking, in which error terms magically cancel themselves out or are
otherwise negligible, in which functions have all the regularity, invertibility,
etc. needed to justify one’s computations, that various obstructions are
somehow trivial, and that facts that are true in toy model cases can be
automatically extrapolated to cover the general case. This mode of thinking
can lead to arguments that are highly unconvincing, but they are still useful
for discovering possible strategies to then investigate further.

After a best-case analysis has located a possible strategy, the next step
is then often to heuristically validate the strategy using an average case
analysis, in which error terms and obstructions are not magically assumed to
be trivial, but are instead somehow “typical” in size, and rare “pathological”
cases are assumed to not be present. For instance, statements that are known
to be true “almost everywhere” or “with high probability” might be assumed
to actually be true “everywhere” or “surely” for the purposes of such an
analysis. It is also common at this stage to assume that results that have
been proven in the literature for a slightly different (but still very similar)
setting than the current one, are also applicable here. If this average case
analysis works out, then the unconvincingly justified strategy would now be
upgraded to having the status of a heuristically plausible argument.

Then, to stress-test this argument, one often then takes a “devil’s advo-
cate” position and considers a worst-case scenario, in which error terms and
other obstructions conspire to cause the maximum damage possible to the
argument, and the objects one is manipulating resemble those given as text-
book counterexamples to various plausible statements that were going to be
used in one’s argument. Sometimes these scenarios indicate that the argu-
ment is in fact unworkable, or beyond the reach of current methods to make
rigorous; in other cases, they may actually lead to a formal counterexample
to the problem at hand. In yet other cases, when trying to actually build
a consistent worst-case scenario, one discovers a key feature of the problem
that blocks all the really bad things from happening simultaneously, which
then turns out to be the key to resolving the full problem.

It is usually only after all these scenarios are understood that one takes
a properly rigorous and mathematical approach to the problem, considering
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all possible scenarios together (possibly dividing into cases as necessary) and
making sure that they are all properly dealt with.

The other modes of thinking mentioned previously are also used from
time to time in the problem-solving process. For instance, one quick and
dirty way to predict (with reasonable accuracy) whether a given statement
is true is to check all of the extreme cases (thus adopting “absolutist think-
ing”). If a statement is true in both the best-case scenario and the worst-case
scenario, then it is reasonably likely to be true in all intermediate scenar-
ios as well (particularly if the statement has a fair amount of “convexity”
in it). Such heuristics can provide useful shortcuts in process of finding a
rigorous solution to a problem (though of course they should not be used in
the actual solution itself, unless one can rigorously justify such “convexity”
claims, e.g. using interpolation theorems).

When solving a complex problem, it is often beneficial to adopt different
modes of thinking to different aspects of a problem, for instance taking a
best-case scenario for all but one component of the problem, which one then
treats with a worst-case analysis. This “turns off” all but one of the difficul-
ties of the problem, thus focusing attention on questions such as “Assuming
everything else works out, can we really get around Obstruction X?”. After
subjecting each of the different aspects in turn to such a focused worst-case
analysis, one can often piece together the correct strategy for dealing with
all the difficulties simultaneously.

6.11. Duality

In linear algebra (and in many other fields of mathematics), one can use
duality to convert an input into an output, or vice versa. For example, a
covector is an (linear) operation that takes a vector as input and returns a
scalar as output. It arises for instance when differentiating a scalar function
f of many variables. One can either view the derivative of f at a point x as
an operation which takes a vector v as input and returns a scalar Dvf(x)
(the directional derivative) as output, or one can simply view the derivative
of f at x as a covector27 df(x).

Dually, one can view a vector as an operation that takes a covector as
input, and returns a scalar as output.

Similarly, a linear transformation T from one vector space V to another
W can be viewed as a map from a V -vector to a W -vector, or from a V -
vector and a W -covector to a scalar, or from a W -covector to a V -covector
(this map is of course just the adjoint of T ).

27Letting x vary, one obtains a covector field df , more commonly known as a 1-form.
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Or: a bilinear form B on V and W can be viewed as a map from V -
vectors and W -vectors to scalars, or from V -vectors to W -covectors, or
W -vectors to V -covectors. For instance, the Euclidean metric is a (non-
degenerate, symmetric) bilinear form that identifies vectors with covectors,
and in particular can identify the derivative df(x) of a function at a point,
which is a covector, with a vector ∇f(x), known as the gradient of f at x.

These manipulations can seem rather abstract, but they can also be
applied to objects and operations in everyday life. For instance, if one views
money as the scalars, then goods and markets can be viewed as dual to
each other (in the way that vectors and covectors are dual to each other):
a market takes a good as input and returns an amount of money as output
(the price of that good in that market). Dually, one can view a good as an
operation that takes a market as input and returns an amount of money as
output; this might be how a comparison shopper would view a good.

An industrial process that converts raw goods into finished goods (the
analogue of a linear transformation) can also be viewed as a means of taking
a raw good and a finished goods market as input and returning an amount
of money as output (the money that the finished goods market will offer for
the processed good); this might be how the owner of a factory would view
this process. Or, one could view the process as an operation that takes a
finished goods market as input and returns a raw goods market as output
(this is the adjoint of the process); this might be how a (micro-)economist
would view the process.

Here is a somewhat different (and less linear) example. Suppose one has
a set of girls and a set of boys, with each girl assigning a rating to each
boy indicating that boy’s desirability to that girl. (We make no symmetry
assumptions here about the converse desirability.) Here, the ratings play the
role of the scalars. Desirability is then an analogue of a bilinear form; it takes
a girl and a boy as input and returns a rating as output. Alternatively, it can
be viewed as an operation that takes a girl as input and returns a ranking of
the boys as output, with the boys being ranked by their desirability to that
girl. As a third alternative, it can be viewed as an operation that takes a boy
as input and returns a ranking of the girls as output (the girls are ranked
now by how much they desire that particular boy). Notice how different the
desirability operation will look from the girls’ point of view than from the
boys’ point of view, though the two are of course adjoint to each other.

These different perspectives of a single operation are mathematically
equivalent to each other (at least in the cases when the operations are linear
and the underlying spaces are finite-dimensional, or at least reflexive), but
from a conceptual point of view they can be radically different, as they
emphasise different features of that operation.
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6.12. Open and closed conditions

When defining the concept of a mathematical space or structure (e.g. a
group, a vector space, a Hilbert space, etc.), one needs to list a certain
number of axioms or conditions that one wants the space to satisfy. Broadly
speaking, one can divide these conditions into three classes:

(1) Closed conditions. These are conditions that generally involve
an =, ≤, or ≥ sign or the universal quantifier, and thus codify such
things as algebraic structure, non-negativity, non-strict monotonic-
ity, semi-definiteness, etc. As the name suggests, such conditions
tend to be closed with respect to limits and morphisms.

(2) Open conditions. These are conditions that generally involve a
6=, >, or < sign or the existential quantifier, and thus codify such
things as non-degeneracy, finiteness, injectivity, surjectivity, invert-
ibility, positivity, strict monotonicity, definiteness, genericity, etc.
These conditions tend to be stable with respect to perturbations.

(3) Hybrid conditions. These are conditions that involve too many
quantifiers and relations of both types to be either open or closed.
Conditions that codify topological, smooth, or metric structure
(e.g. continuity, compactness, completeness, connectedness, regu-
larity) tend to be of this type (this is the notorious “epsilon-delta”
business), as are conditions that involve subobjects (e.g. the prop-
erty of a group being simple, or a representation being irreducible).
These conditions tend to have fewer closure and stability proper-
ties than the first two (e.g. they may only be closed or stable in
sufficiently strong topologies); but there are sometimes some deep
and powerful rigidity theorems that give more closure and stability
here than one might naively expect.

Ideally, one wants to have one’s concept of a mathematical structure be
both closed under limits, and also stable with respect to perturbations, but
it is rare that one can do both at once. Indeed, many induction arguments
or continuity arguments exploit the lack of nontrivial structures that are
both closed or stable; see Section 1.7.

In many cases, one often has to have two classes for a single concept: a
larger class of “weak” spaces that only have the closed conditions (and so
are closed under limits) but could possibly be degenerate or singular in a
number of ways, and a smaller class of “strong” spaces inside that have the
open and hybrid conditions also. A typical example: the class of Hilbert
spaces is contained inside the larger class of pre-Hilbert spaces. Another
example: the class of smooth functions is contained inside the larger class
of distributions.
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As a general rule, algebra tends to favour closed and hybrid conditions,
whereas analysis tends to favour open and hybrid conditions. Thus, in
the more algebraic part of mathematics, one usually includes degenerate
elements in a class (e.g. the empty set is a set; a line is a curve; a square or
line segment is a rectangle; the zero morphism is a morphism; etc.), while in
the more analytic parts of mathematics, one often excludes them (Hilbert
spaces are strictly positive-definite; topologies are usually Hausdorff (or at
least T0); traces are usually faithful; etc.).

To put it more succinctly: algebra is the mathematics of the “equals”
sign, of identity, and of the “main term”; analysis is the mathematics of
the “less than” sign, of magnitude, and of the “error term”. Algebra prizes
structure, symmetry, and exact formulae; analysis prizes smoothness, sta-
bility, and estimates. It is because of these complementary foci that either
subfield of mathematics looks strange when viewed through the lens of the
other.
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Études Sci. Publ. Math. No. 53 (1981), 53–73.

[Gu2010] L. Guth, The endpoint case of the Bennett-Carbery-Tao multilinear Kakeya con-
jecture, Acta Math. 205 (2010), no. 2, 263-286.

[GuKa2010] L. Guth, N. Katz, Algebraic methods in discrete analogs of the Kakeya prob-
lem, Adv. Math. 225 (2010), no. 5, 2828-2839.

[GuKa2010b] L. Guth, N.H. Katz, On the Erdős distinct distance problem in the plane,
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